Module Name: MATHEMATICAL SCIENCES - 704 Exam Date: 28-Dec-2023 Back: 09:00-12:00

Sr. Clie No.	ent Question ID	Question Body and Alternatives	Marks	Negative Marks
Objective Q	Question			
1 7040	001	Rounding off 4.58500001 to the second decimal place will give 1. 4.6 2. 4.58 3. 4.59 4. 4.585 दूसरे दशमलव स्थान पर 4.58500001 का पूर्णांकन देगा 1. 4.6 2. 4.58 3. 4.59 4. 4.585 Al I I I Al J I I Al J I I I I I I I I I I I I I I I I I I I	2.0	0.50
Objective Question 2 704002	Two rectangular pieces of land both having all sides and diagonals in whole numbers in metres have areas in the ratio 4:3 and the smaller (in area) piece has diagonal 41m and one side 9m. However, the bigger piece has a smaller diagonal. The diagonal of the bigger piece is 1. 25 2. 29 3. 32 4. 34 ct आयताकार ज़मीन के टुकड़ों, जितमें दोनों की सभी भुजाएं और विकर्ण मीटर में पूर्णीक हैं, के क्षेत्रफल 4:3 के अनुपात में हैं और (क्षेत्रफल में) छोटे टुकड़े का विकर्ण 41 मीटर और एक भुजा 9 मीटर है। तथापि, वड़े टुकड़े का विकर्ण छोटा है। वड़े टुकड़े का विकर्ण है 1. 25 2. 29 3. 32 4. 34 Al 1 1. 42 2. 43	2.0	0.50	
				llegeApp Empowering Education

Objective Question 704003 2.0 0.50 When an alarm goes off, policemen X and Y chase thief T, on foot and on a cycle, respectively, along the same straight road. Initially the distance between X and Y was 4 times that between T and X. If X runs twice as fast as T and Y rides twice as fast as X, then X and Y will catch up with T at the same time X will catch T first Y will catch T first Y will cross X during the chase खतरे की घंटी बजने पर पुलिसकर्मी X और Y, चोर T का पीछा एक ही सीधी सड़क पर क्रमशः पैदल और साईकिल पर करते हैं। आरंभ में X और Y के बीच की दूरी T व X के बीच की दूरी का 4 गुना थी। यदि X की गति T से दूगनी है और Y की गति X की गति का दुगना है, तब T को X और Y एक ही समय पकड़ेगें T को X पहले पकड़ेगा 2. T को Y पहले पकड़ेगा पीछा करते हुए X को Y पार करेगा Al 1 2 A3 3 3 A4 4 Objective Question 704004 2.0 0.50

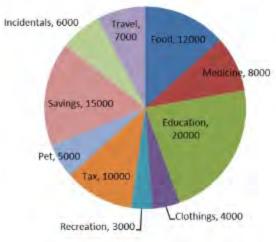
In a grid puzzle, each row and column in the 9×9 grid, as well as each 3×3 subgrid shown with heavy borders, must contain all the digits 1—9.

	8		4		9	6	5	3
6	4	2	8				7	
					?	8		
		7	7		5		4	2
			7		1			
8	5		6			1		
		6	Ħ			1		
	1				4	7	3	6
2	7	3	5	6	8		1	

In the above partially filled grid, the square marked "?" contains

- 1. :
- 2. 3
- 3. 6
- 4. 7

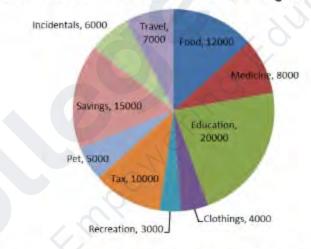
एक संजाल (ग्रिड) पहेली में, 9×9 के संजाल (ग्रिड) की प्रत्येक पंक्ति और स्तंभ में, साथ-ही-साथ, 3×3 के प्रत्येक उप-संजाल जिन्हें गाढ़ी रेखाओं से दर्शाया गया है, में 1-9 तक सभी अंक होने चाहिए।


	8		4	1	9	6	5	3
6	4	2	8				7	
					?	8		
	1	7			5	1	4	2
M		T-	7		1			=
8	5		6	V		1		
	5.1	6	7					
	1	0			4	7	3	6
2	7	3	5	6	8		1	

आंशिक रूप से भरे संजाल (ग्रिड) में, "?" के निशान वाले वर्ग में अंक हैं

- 1.
- 2. 3
- 3. 6 4. 7
- Ai I
- 1
- A2 2
 - 2
- A3
- 3
- A4 4

Objective Question 2.0 704005 0.50 Consider two 24-hour clocks A and B. Clock A gets faster by 8 min and clock B gets slower by 12 min every hour. They are synchronised to the correct time at 05:00 hrs. Within the following 24 hours at a certain instant clock A shows 15:12 hrs and clock B shows 12:12 hrs. What is the true time at that instant? 1. 13:48 2. 14:00 3. 14:12 14:36 दो 24-घंटों वाली घडियों A a B का विचार करें। घडी A प्रति घंटा 8 मिलट तेज़ हो जाती है और घड़ी B प्रति घंटा 12 मिनट धीमी हो जाती है। उन्हें 05:00 बजे सही समय के लिए तुल्यकालिक किया जाता है। आगामी 24 घंटों में घड़ी A किसी क्षण पर 15:12 बजे और घड़ी B उसी क्षण पर 12:12 बजे दर्शाती है। उस क्षण सही समय क्या 13:48 14:00 3. 14:12 14:36 Al I Objective Question 2.0 0.50 704006


Average monthly expenses (in rupees) incurred by a family are as shown in the chart.

What is the value of the central angle corresponding to the amount spent on recreation?

- 1. 12°
- 2. 13°
- 3. 14°
- 4. 15°

एक परिवार का औसत मासिक व्यय (रूपये में) के चार्ट के अनुसार है

आमोद-प्रमोद (recreation) पर किये गये खर्च के अनुरूप केंद्रीय कोण का मान क्या

- 8?
- 1. 12°
- 2. 13°
- 3. 14°
- 4. 15°
- A1 1
- 1
- A2 5
- 2
- A3 3

Objective Question 2.0 0.50 704007 Train travel time between stations A and B is 39 hours. Every day a pair of trains leave from A to B and B to A at 6 AM. If the service starts on a Monday, on which earliest day will the same train rakes start the journeys again from their original stations? Wednesday Thursday 3. Friday Saturday दो स्टेशनों A और B के बीच रेलगाड़ी का यात्रा काल 39 घंटे है। रेलगाडियों की एक जोड़ी प्रतिदिन A से B को और B से A की ओर स्बह 6 बजे चलती है। यदि यह सेवा एक सोमवार से आरंभ होती है, तो अगली बार किस दिन उन्हीं रेलगाडियों की जोड़ी अपने मूल गंतव्य स्थान से प्न: यात्रा आरंभ करेगी? ब्धवार 1. बुहस्पतिवार 2. 3. श्क्रवार शनिवार Al i A3 3 Objective Question 704008 2.0 0.50 In a family of four, the engineer is the son of the chemist and the brother of the teacher. The chemist is the wife of the lawyer and the mother of the teacher. Which of the following conclusions is necessarily true? The teacher is the sister of the engineer. The teacher is the son of the chemist. The lawyer is the father of the teacher. The lawyer is the brother of the teacher. चार व्यक्तियों के एक परिवार में, इंजीनियर रसायनविद का प्त्र है और अध्यापक का भाई है। रसायनविद वकील की पत्नी है और अध्यापक की मां है। निम्नलिखित में से कौन-सा निष्कर्ष निश्चित रूप से सत्य है? अध्यापक इंजीनियर की बहन है। 1. अध्यापक रसायनविद का पुत्र है। 2. वकील अध्यापक का पिता है। 3. वकील अध्यापक का भाई है।

	Al 1		
	ī		
	A2 2		
	2		
	A3 3		
	3		
	A4 4		
	-4		
jective Question 704009		2.0	0.50
	In a queue each woman is preceded and followed by exactly two men. A particular woman is positioned, from among the women, fourth from the front. The woman's position in the queue from the front is 1. 9th 2. 10th 3. 11th 4. 12th Ver कतार में प्रत्येक महिला के आगे और पीछे ठीक दो पुरुष हैं। महिलाओं में, एक महिला कतार के अगले सिरे से चौथे स्थान पर हैं। अगले सिरे से कतार में उस महिला का स्थान है 1. 9 वां 2. 10 वां 3. 11 वां 4. 12 वां Ali 1 1 Ali 2 2 Ali 3 3 3 3 44 4 4		
bjective Question			
704010	Sets x_1,x_2,\cdots,x_{100} and y_1,y_2,\cdots,y_{150} have means zero and the same standard deviations. Which of the following is the ratio of $\sum_{1}^{100}x_i^2$ to $\sum_{1}^{150}y_i^2$ closest to? 1. $1:1$ 2. $\sqrt{2}:\sqrt{3}$ 3. $2:3$ 4. $4:9$	2.0	0.50
		Ko	ollege App

```
समुच्चयों x_1, x_2, \cdots, x_{100} और y_1, y_2, \cdots, y_{150} के माध्य शून्य हैं और दोनों के मानक
                   विचलन समान हैं। \Sigma_1^{100} x_i^2 का \Sigma_1^{150} y_i^2 से अनुपात निम्नलिखित में से किस के
                   निकटतम है?
                        1:1
                        \sqrt{2}:\sqrt{3}
                         2:3
                         4:9
                   A1 1
Objective Question
                                                                                                                           0.50
     704011
                    From a two-digit number, the sum of its digits is subtracted. The resulting
                          always divisible by 6
                    1.
                    2.
                          always divisible by 9
                    3.
                          never divisible by 4
                    4.
                          never divisible by 5
                   एक दो-अंकों की संख्या से, उसके अंकों के योग को घटाया जाता है। परिणामी संख्या
                        हमेशा 6 से विभाज्य है
                        हमेशा 9 से विभाज्य है
                         कभी भी 4 से विभाज्य नहीं है
                         कभी भी 5 से विभाज्य नहीं है
                      3
Objective Question
     704012
                                                                                                                     2.0
                                                                                                                           0.50
```

Only 10 1. 2. Only 10 and 11 3. Only 10,11 and 12 पूर्णांकों 10, 11, 12 और 13 में से किसे चार पूर्णांकों के योग के रूप में लिखा जा सकता है? (पुनरावृत्ति अनुमत है।) केवल 10 केवल 10 और 11 2. केवल 10,11 और 12 सभी 4. A1 1 1 2 A3 3 3 Objective Question 704013 2.0 0.50 Which of the following powers of 3 is the largest factor of $1 \times 2 \times 3 \times 4 \times ... \times 30$? 310 1. 2. 313 3. 314 315 निम्नलिखित 3 के घातांकों में से $1 \times 2 \times 3 \times 4 \times ... \times 30$ का सबसे बड़ा गुणक कौन-सा है? 310 313 2. 314 3. 315 A1 1 1 2

Kollege Apply

Which of the integers 10, 11, 12 and 13 can be written as the sum of squares of

four integers (allowing repetition)?

पूर्णांकों की निम्नलिखित परिमित श्रेणी में, कितने पद उनके तुरंत पूर्ववर्ती पदाँ से विभाज्य हैं? 8.3,4,9,3,5,9,5,9,9,4,5,6,3,3,5,7,2,3,9,9

- 1. 3
- 2. 4
- 3. 5
- 4. 6

Al 1

1

A2 ,

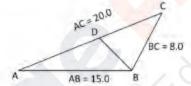
- 2

A3 3

3

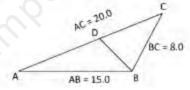
A4 4

4


Objective Question

16 704016

In the figure $\triangle ABC$ and $\triangle BDC$ are similar.


0.50

Then BD = ?

- 1. 8.0
- 2. 7.2
- 3. 7.5
- 4. 6.0

दिए गए चित्र में ΔABC और ΔBDC समरूप हैं।

तब BD = ?

- 1. 8.0
- 2. 7.2
- 3. 7.5
- 4. 6.0

A1 1

A2 2

2

A3 .

3

	⁶⁷⁷ 4		
	-4		
ojective Question 704017		2.0	0.50
704017	Two cylindrical candles have unequal heights and diameters. The shorter lasts for 13 hours and the longer for 9 hours. They are lit at the same time and after 5 hours their heights are the same. What is the ratio of their original heights? 1. 1:2 2. 13:18 3. 9:13	2.0	0.30
	4. √5:3		
	दो बेलनाकार मोमबतियों की ऊँचाई व व्यास भिन्न तथा असमान हैं। छोटी वाली 13 घंटें तक जलती है और लंबी वाली 9 घंटे तक जलती है। उन्हें एक ही समय पर		
	जलाया जाता है और 5 घंटों के पश्चात् उनकी ऊंचाइयां एक समान हो जाती हैं।		
	उनकी मूल ऊँचाइयों का अनुपात क्या है?		
	1. 1:2		
	2. 13:18		
	3. 9:13		
	4. √5:3		
	Al 1		
	I		
	A2 2		
	2		
	A3 3		
	3		
	A4 4		
jective Question			
704018	Every day a child adds to her piggy bank the same number of coins as are already there in it. If she starts with one coin then the piggy-bank gets full in 8 days. The number of days it will take to fill if she starts with two coins, is 1. 4 2. 5 3. 6 4. 7 एक बच्ची प्रतिदिन उतने ही सिक्के और डालती है जितने कि उसमें पहले से ही हैं। यदि वह एक सिक्के से आरंभ करती है तो गुल्लक 8 दिनों में भर जाती है। यदि वह दो सिक्कों से आरंभ करती है तो गुल्लक को भरने वाले दिनों की संख्या है 1. 4 2. 5 3. 6 4. 7	2.0	0.50
	A1 I		
	i .		
			llege 🧛

			1 11
	A2 2		
	2		
	A3 3		
	3		
	A4 ₄		
	4		
Objective Question 19 704019		2.0	0.50
7	The following 13 observations are molecular weights of 13 compounds (in amu):		
	65, 61, 63, 65, 61, 60, 65, 83, 65, 84, 61, 65, 62		
	Which of the following is true of the molecular weights?		
	1. Mean = Median < Mode		
	Median < Mode = Mean Mode = Median < Mean		
	Mode = Median < Mean Median < Mean < Mode		
	नीचे दिये गये 13 प्रेक्षण 13 यौगिकों के आण्विक भार (amu इकाई में) हैं		
	65, 61, 63, 65, 61, 60, 65, 83, 65, 84, 61, 65, 62		
	आण्विक भारों के लिए निम्नलिखित में से कौन-सा सत्य है?		
	1. माध्य = माध्यका < बह्लक		
	2. माध्यिका < बहुलक = माध्य		
	3. बह्लक = माध्यिका < माध्य		
	4. माध्यिका < माध्य < बहुलक		
	T. THOUSE STORE STORE		
	Al I		
	ī		
	A2 2		
	2 A3 3		
	3		
	A4 4		
Objective Question			
20 704020	Consider the equation $3^x - 3^y = 3^4$. A solution to this equation with x and y integers	2.0	0.50
	1. satisfies $x > 4$, $y > 4$		
	2. satisfies $x > 5$, $y > 3$		
	 satisfies x > 6, y > 2 is not possible 		
	समीकरण $3^x - 3^y = 3^4$ पर विचार करें। इस समीकरण का हल x और y के पूर्णांक		
	होने पर		
	The state of the s		
	 संतुष्ट करता है x > 4, y > 4 		
	2. संतुष्ट करता है x > 5, y > 3		
	3. संतुष्ट करता है $x > 6, y > 2$		
	4. संभव नहीं है		
		Ko	ollege A

	Af 1		
	1		
	1		
	A2 2		
	2		
	A3 3		
	3		
	A4 4		
	4		
ojective Question			
704021	Consider the following subset of \mathbb{R} : $U = \{ x \in \mathbb{R} : x^2 - 9x + 18 \le 0, x^2 - 7x + 12 \le 0 \}.$	3.0	0.75
	Which one of the following statements is true?		
	1. $\inf U = 5$.		
	 inf U = 4. inf U = 3. 		
	4. $\inf U = 3$.		
	R के निम्न उपसमुच्चय पर विचार करें:		
	$U = \{ x \in \mathbb{R} : x^2 - 9x + 18 \le 0, x^2 - 7x + 12 \le 0 \}.$		
	निम्न कथनों में से कौन सा सत्य है?		
	$1. \inf U = 5.$		
	 inf U = 4. inf U = 3. 		
	4. $\inf U = 2$.		
	AI 1		
	AZ 2		
	A3 3		
	2 A3 3		
	A4 4		
	4		
ojective Question 704022	To Cardena de marco de marco de Cardena de C	3.0	0.75
	Let X be a non-empty finite set and	2.0	A 7-
	$Y = \{f^{-1}(0) : f \text{ is a real-valued function on } X\}.$		
	Which one of the following statements is true?		
	Y is an infinite set.		
	2. Y has 2 ^X elements.		
	 There is a bijective function from X to Y. 		
	 There is a surjective function from X to Y. 		
		W ₀	llogo
			llege App

मानें कि X एक अरिक्त परिमित समुच्चय है तथा

 $Y = \{f^{-1}(0): f, X \text{ पर कोई वास्तविक मान वाला फलन है}\}$ ।

निम्न कथनों में से कौन सा सत्य है?

- Y एक अपरिमित समुच्चय है।
- 2. Y के 2|X| अवयव हैं।
- 3. X से Y में एक एकैकी आच्छादी फलन है।
- 4. X से Y में एक आच्छादी फलन है।

Al 1

1

A2 2

2

A3 3

3

A4 .

Objective Question 23 704023

Consider the following infinite series:

(a)
$$\sum_{n=1}^{\infty} \frac{\sin(n\pi/2)}{\sqrt{n}}$$
, (b) $\sum_{n=1}^{\infty} \log(1 + \frac{1}{n^2})$.

Which one of the following statements is true?

- (a) is convergent, but (b) is not convergent.
- 2. (a) is not convergent, but (b) is convergent.
- Both (a) and (b) are convergent.
- Neither (a) nor (b) is convergent.

निम्न अनंत श्रेणियों पर विचार करें:

(a)
$$\sum_{n=1}^{\infty} \frac{\sin(n\pi/2)}{\sqrt{n}}$$
, (b) $\sum_{n=1}^{\infty} \log(1+\frac{1}{n^2})$.

निम्न कथनों में से कौन सा सत्य है?

- (a) अभिसारी है लेकिन (b) अभिसारी नहीं है।
- (a) अभिसारी नहीं है लेकिन (b) अभिसारी है।
- (a) तथा (b) दोनों अभिसारी हैं।
- न तो (a) अभिसारी है और न ही (b) अभिसारी है।

A1 1

1

A2 .

-

A3

3

3.0 0.75

Objective Question 704024 3.0 0.75 Consider the sequence $(a_n)_{n\geq 1}$, where $a_n=\cos\left((-1)^n\frac{n\pi}{2}+\frac{n\pi}{3}\right)$. Which one of the following statements is true? $\limsup a_n = \frac{\sqrt{3}}{2}.$ 1. 2. $\limsup a_{2n} = 1.$ $\limsup_{n\to\infty} a_{2n} = \frac{1}{2}.$ 3. 4. $\limsup a_{3n} = 0.$ अनुक्रम $(a_n)_{n \geq 1}$ पर विचार करें, जहाँ $a_n = \cos\left((-1)^n \frac{n\pi}{2} + \frac{n\pi}{3}\right)$ है। निम्न कथनों में से कौन सा सत्य है? $\limsup_{n\to\infty} a_n = \frac{\sqrt{3}}{2},$ 2. $\limsup a_{2n} = 1.$ $\limsup_{n\to\infty} a_{2n} = \frac{1}{2}.$ 3. 4. $\limsup a_{3n} = 0.$ Al 1 A2 2 A4 4 Objective Question 704025 3.0 0.75 Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function such that f and its derivative f' have no common zeros in [0,1]. Which one of the following statements is true? 1. f never vanishes in [0,1]. 2. f has at most finitely many zeros in [0,1]. 3. f has infinitely many zeros in [0,1]. 4. f(1/2) = 0.

मार्ने कि $f: \mathbb{R} \to \mathbb{R}$ एक ऐसा अवकलनीय फलन है ताकि f तथा इसके अवकलज f'का [0,1] में कोई उभयनिष्ठ शून्य नहीं हैं। निम्न कथनों में से कौन सा सत्य है? [0,1] में f कभी ल्प्त नहीं होता है। [0,1] में f के अधिक से अधिक परिमित शून्य हैं। 2. [0,1] में f के अनंत शून्य हैं। 3. f(1/2) = 0.4. A1 1 2 3 3.0 0.75 Let f(x) be a cubic polynomial with real coefficients. Suppose that f(x) has exactly one real root and that this root is simple. Which one of the following

Objective Question

704026

statements holds for ALL antiderivatives F(x) of f(x)?

- F(x) has exactly one real root.
- 2. F(x) has exactly four real roots.
- 3. F(x) has at most two real roots.
- F(x) has at most one real root.

मार्ने कि f(x) वास्तविक गुणांकों वाला कोई त्रिघाती बह्पद है। मार्ने कि f(x) का केवल एक वास्तिविक मूल है तथा यह मूल सरल है। f(x) के सभी प्रति-अवकलजों F(x) के लिए निम्न कथनों में से कौन सा सत्य है?

- F(x) का कुल एक वास्तविक मूल है।
- F(x) के कुल चार वास्तविक मूल हैं। 2.
- F(x) के अधिक से अधिक दो वास्तविक मूल हैं। 3.
- F(x) का अधिक से अधिक एक वास्तविक मूल है।

A1 1

A2 2

A3 3

Objective Question

We denote by l_n the $n \times n$ identity matrix. Which one of the following statements is true?

- If A is a real 3 x 2 matrix and B is a real 2 x 3 matrix such that BA = I₂, then AB = I₃.
- 2. Let A be the real matrix $\begin{pmatrix} 3 & 3 \\ 1 & 2 \end{pmatrix}$. Then there is a matrix B with integer entries such that $AB = I_2$.
- 3. Let A be the matrix $\binom{3}{1}$ with entries in $\mathbb{Z}/6\mathbb{Z}$. Then there is a matrix B with entries in $\mathbb{Z}/6\mathbb{Z}$ such that $AB = I_2$.
- If A is a real non-zero 3 x 3 diagonal matrix, then there is a real matrix B such that AB = I₃.

हम $n \times n$ तत्समक आव्यूह को I_n से निर्दिष्ट करते हैं। निम्न कथनों में से कौन सा सत्य है?

- 1. यदि A एक 3×2 वास्तिविक आव्यूह है तथा B एक ऐसा 2×3 वास्तिविक आव्यूह है कि $BA = I_2$ हो, तब $AB = I_3$ होगा।
- 2. मार्ने कि A वास्तविक आव्यूह $\begin{pmatrix} 3 & 3 \\ 1 & 2 \end{pmatrix}$ है। तब पूर्णांक प्रविष्टियों का एक ऐसा आव्यूह B होगा कि $AB = I_2$ हो।
- 3. A को $\mathbb{Z}/6\mathbb{Z}$ में प्रविष्टियों वाला आव्यूह $\binom{3}{1}$ मानें। तब $\mathbb{Z}/6\mathbb{Z}$ में प्रविष्टियों वाला एक ऐसा आव्यूह B होगा कि $AB = I_2$ हो।
- 4. यदि A एक शून्येतर 3×3 विकर्ण-आव्यूह है, तो एक ऐसा वास्तविक आव्यूह B होगा कि $AB = I_3$ हो।

A1 1

A2 2

A3 3

A4 4

Objective Question

28 704028

Let $A=\left(a_{i,j}\right)$ be the $n\times n$ real matrix with $a_{i,j}=ij$ for all $1\leq i,j\leq n$. If $n\geq 3$, which one of the following is an eigenvalue of A?

1. 1

2. 1

3. n(n+1)/2

4. n(n+1)(2n+1)/6

3.0

मार्ने कि $A=(a_{i,j})$ ऐसा $n\times n$ वास्तविक आव्युह है जहाँ सभी $1\le i,j\le n$ के लिए $a_{i,j}=ij$ हैं। यदि $n\ge 3$ हैं, तब तिस्त में से A का एक अभिलक्षणिक मात क्या होगा?

1. 1
2. n3. n(n+1)/24. n(n+1)(2n+1)/6Al 1
1
A2 2
2
A3 3
3
A4 4

Objective Question

29 704029

Which one of the following statements is FALSE?

3.0 | 0.75

- 1. The product of two 2×2 real matrices of rank 2 is of rank 2.
- 2. The product of two 3x3 real matrices of rank 2 is of rank at most 2.
- 3. The product of two 3x3 real matrices of rank 2 is of rank at least 2.
- The product of two 2x2 real matrices of rank 1 can be the zero matrix.

निम्न कथनों में से कौन सा असत्य है?

- कोटि (rank) 2 के दो 2×2 वास्तविक आव्यूहों के गुणनफल की कोटि (rank) 2 होती है।
- कोटि (rank) 2 के दो 3×3 वास्तविक आव्यूहों के गुणनफल की कोटि (rank)
 अधिक से अधिक 2 होती है।
- कोटि (rank) 2 के दो 3×3 वास्तविक आव्यूहों के गुणनफल की कोटि (rank) कम से कम 2 होती है।
- कोटि (rank) 1 के दो 2×2 वास्तविक आव्यूहों का गुणनफल शून्य-आव्यूह हो सकता है।

A1 1

1

A2 ,

2

A3 3

2

A4 2

4

Objective Question

Objective Question 31 704031

3.0 0.75

Let (-,-) be a symmetric bilinear form on \mathbb{R}^2 such that there exist nonzero $v,w\in\mathbb{R}^2$ such that (v,v)>0>(w,w) and (v,w)=0. Let A be the 2×2 real symmetric matrix representing this bilinear form with respect to the standard basis. Which one of the following statements is true?

- 1. $A^2 = 0$.
- rank A = 1.
- rank A = 0.
- There exists u ∈ R², u ≠ 0 such that (u,u) = 0.

मानें कि \mathbb{R}^2 पर (-,-) एक ऐसा समित द्वरैखिक रूप है जिसके लिए ऐसे अशून्य $v,w \in \mathbb{R}^2$ हैं जहाँ (v,v)>0>(w,w) व (v,w)=0 है। मानें कि मानक आधार के संदर्भ में इस द्वरैखिक रूप का प्रतिनिधित्व करने वाला 2×2 वास्तविक समित आव्यह A है। निम्न कथनों में से कौन सा सत्य है?

- 1. $A^2 = 0$.
- 2. कोटि (rank) A = 1.
- 3. कोटि (rank) A = 0.
- ऐसा u ∈ ℝ², u ≠ 0 है जिसके लिए (u,u) = 0 है।

	A2 2		
	; · · · 2		
	2		
	A3 3		
	3		
	A4 4		
	4		
ective Question			17.22
704032	For $a \in \mathbb{R}$, let $A_a = \begin{pmatrix} 2 - 1 & 0 \\ -1 & 2 - 1 \\ 0 & -1 & a \end{pmatrix}$. Which one of the following statements is true? 1. A_a is positive definite for all $a < 3$.	3.0	0.75
	 A_a is positive definite for all a > 3. 		
	 A_a is positive definite for all a ≥ -2. 		
	 A_a is positive definite only for finitely many values of a. 		
	$a \in \mathbb{R}$ के लिए मानें कि $A_a = \begin{pmatrix} 2 - 1 & 0 \\ -1 & 2 - 1 \\ 0 & -1 & a \end{pmatrix}$ है। निम्न कथनों में से कौन सा सत्य है?		
	$1. \qquad$ सभी $a < 3$ के लिए A_a धनात्मक निश्चित है।		
	2. सभी $a>3$ के लिए A_a धनात्मक निश्चित है।		
	3. सभी $a \ge -2$ के लिए A_a धनात्मक निश्चित है।		
	4. ऐसे a जिनके लिए A_a धनात्मक निश्चित है, की संख्या परिमित है।		
	Ai i		
	1		
	A2 2		
	A3 j		
	3		
	A4 d		
ective Question			
704033	Let $\mathbb{H} = \{z \in \mathbb{C} : \text{Im}(z) > 0\}$ denote the upper half plane and let $f: \mathbb{C} \to \mathbb{C}$ be defined by $f(z) = e^{iz}$. Which one of the following statements is true?	3.0	0.75
	1. $f(\mathbb{H}) = \mathbb{C} \setminus \{0\}.$		
	 f(ℍ) ∩ ℍ is countable. 		
	 f(ℍ) ∩ ℍ is countable. f(ℍ) is bounded. 		
	 f(ℍ) ∩ ℍ is countable. f(ℍ) is bounded. f(ℍ) is a convex subset of ℂ. 		

Kollege Apply
Empowering Education

मानें कि $\mathbb{H}=\{z\in\mathbb{C}: \mathrm{Im}(z)>0\}$ ऊपरी अर्द्ध समतल को निर्दिष्ट करता है तथा मानें कि $f\colon\mathbb{C}\to\mathbb{C}$ को $f(z)=e^{iz}$ द्वारा परिभाषित किया गया है। निम्न कथनों में से कौन सा सत्य है?

- f(ℍ) = ℂ\{0}.
- f(ℍ) ∩ ℍ गणनीय है।
- ∫(ℍ) परिबद्ध है।
- Сका f(ℍ) एक अवमुख (convex) उपसमुच्चय है।
- Al I
- 1
- A2 2
 - 2
- A3 3
- A4
- Objective Question
- 34 704034

Let f be a meromorphic function on an open set containing the unit circle $\mathcal C$ and its interior. Suppose that f has no zeros and no poles on $\mathcal C$, and let n_p and n_0 denote the number of poles and zeros of f inside $\mathcal C$, respectively. Which one of the following is true?

1.
$$\frac{1}{2\pi i} \int_C \frac{(zf)'}{zf} dz = n_0 - n_p + 1.$$

2.
$$\frac{1}{2\pi i} \int_C \frac{(zf)'}{zf} dz = n_0 - n_p - 1$$
.

3.
$$\frac{1}{2\pi i} \int_C \frac{(zf)^i}{zf} dz = n_0 - n_p$$
.

4.
$$\frac{1}{2\pi i} \int_{\mathcal{C}} \frac{(zf)'}{zf} dz = n_p - n_0.$$

मानें कि इकाई युन्त C तथा इसके अंतः को अंतर्विष्ट करने वाले एक विवृत समुच्चय पर f कोई अनंतकी फलन है। मानें कि f का C पर f तो कोई शून्य है और f है। कोई ध्रुव (pole), तथा f के भीतर f के ध्रुवों और शून्यों की संख्या क्रमशः n_p और n_0 है। निम्न में से कौन सा सन्य है?

1.
$$\frac{1}{2\pi i} \int_C \frac{(zf)'}{zf} dz = n_0 - n_p + 1$$
.

2.
$$\frac{1}{2\pi i} \int_C \frac{(zf)^i}{zf} dz = n_0 - n_p - 1$$
.

3.
$$\frac{1}{2\pi i} \int_C \frac{(zf)^i}{zf} dz = n_0 - n_p$$
.

4.
$$\frac{1}{2\pi i} \int_C \frac{(zf)^i}{zf} dz = n_p - n_0.$$

- A1
- A2 2

3.0

```
Objective Question
      704035
                                                                                                                                               0.75
                        Let f: \mathbb{C} \to \mathbb{C} be a real-differentiable function. Define u, v: \mathbb{R}^2 \to \mathbb{R} by
                        u(x,y) = Re f(x+iy) and v(x,y) = Im f(x+iy), x,y \in \mathbb{R}.
                        Let \nabla u = (u_x, u_y) denote the gradient. Which one of the following is necessarily
                        true?
                        1.
                                 For c_1, c_2 \in \mathbb{C}, the level curves u = c_1 and v = c_2 are orthogonal wherever
                                 they intersect.
                        2.
                                 \nabla u \cdot \nabla v = 0 at every point.
                        3.
                                 If f is an entire function, then \nabla u \cdot \nabla v = 0 at every point.
                                 If \nabla u \cdot \nabla v = 0 at every point, then f is an entire function.
                       मानें कि f: \mathbb{C} \to \mathbb{C} कोई वास्तविक-अवकलनीय फलन है। u, v: \mathbb{R}^2 \to \mathbb{R} को x, y \in \mathbb{R}
                       के लिए u(x,y)=Re\ f(x+i\ y) तथा v(x,y)=Im\ f(x+i\ y) दवारा परिभाषित करें।
                       मानें कि \nabla u = (u_x, u_y) प्रवणता को निर्दिष्ट करता है। निम्न में से कौन सा
                       आवश्यकतः सत्य है?
                               c_1,\,c_2\in\mathbb{C} के लिए, जहाँ पर भी स्तर वक्र u=c_1 व v=c_2 प्रतिच्छेद करते हैं, वे
                               लांबिक होते हैं।
                               प्रत्येक बिन्दू पर \nabla u \cdot \nabla v = 0 है।
                               यदि f कोई सर्वत्र वैश्लैषिक फलन है, तब प्रत्येक बिन्दू पर \nabla u \cdot \nabla v = 0 है।
                       3.
                               यदि प्रत्येक बिन्द् पर \nabla u \cdot \nabla v = 0 है, तब f एक सर्वत्र वैश्लैषिक फलन है।
                       4.
                      Al 1
                       A3 3
                          3
Objective Question
      704036
                                                                                                                                        3.0
                                                                                                                                               0.75
```

How many roots does the polynomial

$$z^{100} - 50z^{30} + 40z^{10} + 6z + 1$$

have in the open disc $\{z \in \mathbb{C} : |z| < 1\}$?

- 1. 100
- 2. 50
- 3. 30
- 4. 0

बह्पद

$$z^{100} - 50z^{30} + 40z^{10} + 6z + 1$$

के विवृत चक्रिका $\{z \in \mathbb{C} : |z| < 1\}$ में कितने मूल हैं?

- 1. 100
- 2. 50
- 3. 30
- 4. 0
- Al I
 - 1
- A2
 - 2
- A3 3
- 3
- A4
 - 1

Objective Question

37 704037

In any class of 50 students, which one of the following statements is necessarily true?

- 3.0
- 0,75

- Two students have the same birthday.
- Every month has birthdays of at least five students.
- 3. There exists a month which has birthdays of at least five students.
- The birthdays of at least 25 students are during the first six months (from January till June).

50 विद्यार्थियों की किसी भी कक्षा में, तिम्ल कथतों में से कौन सा आवश्यकतः सत्य है?

- 1. दो विद्यार्थियों का जनमदिन एक ही है।
- प्रत्येक माह में कम से कम पाँच विद्यार्थियों का जनमदिन होता है।
- ऐसा कोई माह है, जिसमें कम से कम पांच विद्यार्थियों का जन्मदिल होता है।
- पहले छह महीतों (जनवरी से जून) के दौरान कम से कम 25 विद्यार्थियों का जनमदिन होता है।

	1	
	A2 2	
	2	
	A3 3	
	3	
	A4 4	
	4	
bjective Question		10.0
8 704038	Let G be any finite group. Which one of the following is necessarily true?	3.0 0.75
	 G is a union of proper subgroups. G is a union of proper subgroups if G has at least two distinct prime divisors. 	
	 If G is abelian, then G is a union of proper subgroups. G is a union of proper subgroups if and only if G is not cyclic. 	
	मार्ने कि G कोई परिमित समूह है। निम्न में से कौन-सा आवश्यकतः सत्य है?	
	 G उचित उपसम्हों का सिम्मलन है। 	
	2. G उचित उपसमूहों का सम्मिलन है यदि G के कम से कम दो भिन्न अभाज्य भाजक हैं।	
	3. यदि G आबेली है, तब G उचित उपसम्हों का सम्मिलन है।	
	4. G उचित उपसमूहों का सिम्मलन है यदि और केवल यदि G चक्रीय नहीं है।	
	Al 1	
	Ĭ	
	A2 2	
	2	
	A3 3	
	3	
	A4 4	
	4	
bjective Question		
9 704039	Which one of the following is equal to $1^{37} + 2^{37} + 3^{37} + \cdots + 88^{37}$ in $\mathbb{Z}/89\mathbb{Z}$?	3.0 0.75
	1. 88	
	288	
	32	
	4. 0	
	$\mathbb{Z}/89\mathbb{Z}$ में निम्न में से कौन सा $1^{37} + 2^{37} + 3^{37} + \cdots + 88^{37}$ के बराबर है?	
	1. 88	
	288	
	32	
	4. 0	
	A1 1	
		KollegeAppl
		Empowering Education

		Kollege Appl
FI 704041		3.0 0.75
Objective Question	*	
	44	
	i e	
	AJ j	
	2	
	i A2 ₂	
	Al i	
	4. K को अंतर्विष्ट करने वाला C का सबसे छोटा संवृत उपसमुच्चय क्षेत्र नहीं है।	
	 ८ क्षेत्र K का बीजीय विस्तार है। 	
	 K क्षेत्र Q का बीजीय विस्तार है। 	
	1. C में K सघन है।	
	जो ℝ में अंतर्विष्ट नहीं है। निम्न कथनों में से <mark>कौन सा आवश्यकत:</mark> सत्य है?	
	युक्तिडीय सांस्थितिकी वाले क्षेत्र C पर विचार करें। मानें कि C का उचित उपक्षेत्र K है	
	 C is an algebraic extension of K. The smallest closed subset of C containing K is NOT a field. 	
	2. K is an algebraic extension of Q. 3. C is an algebraic extension of V.	
	1. K is dense in C.	
	Consider the field $\mathbb C$ together with the Euclidean topology. Let K be a proper subfield of $\mathbb C$ that is not contained in $\mathbb R$. Which one of the following statements is necessarily true?	
jective Question 704040		3.0 0.75
	4	
	A4 4	
	A3 3	
	A2 2	
	1	

Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} (1-x)^2 \sin(x^2), & x \in (0,1), \\ 0, & \text{otherwise,} \end{cases}$$

and f' be its derivative. Let

$$S = \{c \in \mathbb{R} : f'(x) \le cf(x) \text{ for all } x \in \mathbb{R}\}.$$

Which one of the following is true?

- 1. $S = \emptyset$
- 2. $S \neq \emptyset$ and S is a proper subset of $(1, \infty)$
- (2,∞) is a proper subset of S
- 4. S ∩ (0,1) ≠ Ø

मानें कि $f: \mathbb{R} \to \mathbb{R}$ को

$$f(x) = \begin{cases} (1-x)^2 \sin(x^2), & x \in (0,1), \\ 0, & \text{3-20}, \end{cases}$$

द्वारा परिभाषित किया गया है तथा f' इसका अवकलज है। मार्ने कि $S=\{c\in\mathbb{R}: f'(x)\leq cf(x)$ सभी $x\in\mathbb{R}$ के लिए $\}$

है। निम्न में से कौन सा सत्य है?

- 1. $S = \emptyset$.
- 2. $S ≠ \emptyset$ है तथा S, (1,∞) का उचित उपसम्च्यय है।
- S का एक उचित उपसम्च्चय (2,∞) है।
- 4. S ∩ (0,1) ≠ Ø.
- A1 ,
- A2 .
 - 2
- 3
- 3
- A4 4

Objective Question

42 704042

The smallest real number λ for which the problem

$$-y'' + 3y = \lambda y$$
, $y(0) = 0$, $y(\pi) = 0$

has a non-trivial solution is

- 1. 3
- 2. 2
- 3. 1
- 4. 4

3.0

सबसे छोटी वास्तविक संख्या λ जिसके लिए समस्या $-y'' + 3y = \lambda y,$ $y(0)=0, \qquad y(\pi)=0$ का एक अतुच्छ हल है, कौन सी है? 2. 2 Al 1 Objective Question

The following partial differential equation

 $x^{2} \frac{\partial^{2} u}{\partial x^{2}} - 2xy \frac{\partial^{2} u}{\partial x \partial y} - 3y^{2} \frac{\partial^{2} u}{\partial y^{2}} + \frac{\partial u}{\partial x} - \frac{\partial u}{\partial y} = 0$

is

- elliptic in $\{(x, y) \in \mathbb{R}^2 : y > 0\}$
- parabolic in $\{(x, y) \in \mathbb{R}^2 : x > 0, y > 0\}$
- hyperbolic in $\{(x, y) \in \mathbb{R}^2 : xy \neq 0\}$ 3.
- parabolic in $\{(x, y) \in \mathbb{R}^2 : xy \neq 0\}$

निम्न आंशिक अवकल समीकरण

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} - 2xy \frac{\partial^{2} u}{\partial x \partial y} - 3y^{2} \frac{\partial^{2} u}{\partial y^{2}} + \frac{\partial u}{\partial x} - \frac{\partial u}{\partial y} = 0$$

- $\{(x,y) \in \mathbb{R}^2 : y > 0\}$ में दीर्घवृत्तीय है।
- $\{(x,y) \in \mathbb{R}^2 : x > 0, y > 0\}$ में परवलियक है।
- $\{(x,y) \in \mathbb{R}^2 : xy \neq 0\}$ में अतिपरवलयिक है।
- 4. $\{(x,y) \in \mathbb{R}^2 : xy \neq 0\}$ में परवलियक है।

3.0

Consider the Cauchy problem for the wave equation

$$\frac{\partial^2 u}{\partial t^2} - 4 \frac{\partial^2 u}{\partial x^2} = 0, \qquad -\infty < x < \infty, \qquad t > 0,$$

$$u(x,0) = \begin{cases} e^{\left(-\frac{1}{x^2}\right)}, & x \neq 0, \\ 0, & x = 0, \end{cases}$$

$$\frac{\partial u}{\partial t}\left(x,0\right)=x\,e^{-x^2}, \quad x\in\mathbb{R}\,.$$

Which one of the following is true?

1.
$$\lim_{t\to\infty} u(5,t) = 1$$

$$2. \quad \lim_{t\to\infty}u\left(5,t\right)=2$$

3.
$$\lim_{t\to\infty} u(5,t) = \frac{1}{2}$$

4.
$$\lim_{t\to\infty} u(5,t) = 0$$

तरंग समीकरण

$$\frac{\partial^2 u}{\partial t^2} - 4 \frac{\partial^2 u}{\partial x^2} = 0, \quad -\infty < x < \infty, \quad t > 0,$$

$$u(x,0) = \begin{cases} e^{\left(-\frac{1}{x^2}\right)}, & x \neq 0, \\ 0, & x = 0, \end{cases}$$

$$\frac{\partial u}{\partial t}(x,0)=x\,e^{-x^2},\quad x\in\mathbb{R}\,,$$

निम्न में २ $\frac{\dot{z}}{z}$ \dot{z} के लिए कौशी समस्या पर विचार करें। निम्न में से कौन सा सत्य है?

1.
$$\lim_{t\to\infty}u\left(5,t\right)=1$$

2.
$$\lim_{t\to\infty} u(5,t) = 2$$

3.
$$\lim_{t\to\infty} u(5,t) = \frac{1}{2}$$

$$4. \quad \lim_{t\to\infty} u\left(5,t\right)=0$$

A1 1

A3 3

Objective Question

Using Euler's method with the step size 0.05, the approximate value of the solution for the initial value problem

$$\frac{dy}{dx} = \sqrt{3x + 2y + 1}, \quad y(1) = 1,$$

at x = 1.1 (rounded off to two decimal places), is

- 1. 1.50
- 2. 1.65
- 3. 1.25
- 4. 1.15

सोपान (step size) 0.05 वाली ऑयलर विधि का उपयोग करते हुए प्रारंभिक मान समस्या

$$\frac{dy}{dx} = \sqrt{3x + 2y + 1}, \ y(1) = 1$$

के समाधान का x=1.1 पर अनुमानित मान है (दशमलव के दो स्थान तक):

- 1. 1.50
- 2. 1.65
- 3, 1.25
- 4. 1.15
- Al,
 - 1
- A2 2
 - . 2
- A3 .
- 3
- A4 4

Objective Question

46 704046

The cardinality of the set of extremals of

$$J[y] = \int_0^1 (y')^2 dx,$$

subject to

$$y(0) = 1$$
, $y(1) = 6$, $\int_0^1 y \, dx = 3$

is

- 1. (
- 2. 1
- 3. 2
- 4. countably infinite

$$y(0) = 1$$
, $y(1) = 6$, $\int_0^1 y \, dx = 3$ के अधीन

$$J[y] = \int_0^1 (y')^2 dx$$

के चरमकों के समुच्चय की गणन-संख्या है

- 1. 0
- 2. 1
- 3. 2
- गणनीयतः अपरिमित
- A1
 - 1
- A2 2
- 1
- A3 3
 - 3
- A4
- 4

Objective Question

47 704047

The value of λ for which the integral equation

$$y(x) = \lambda \int_0^1 x^2 e^{x+t} y(t) dt$$

has a non-zero solution, is

- 1. 4
- 2. $\frac{2}{1+e^2}$
- 3. $\frac{4}{e^2-1}$
- 4. $\frac{2}{g^2-1}$

λ का मान जिसके लिए समाकल समीकरण

$$y(x) = \lambda \int_0^1 x^2 e^{x+t} y(t) dt$$

का कोई शून्येतर समाधान है, निम्न है

- 1. 4
- $2. \quad \frac{2}{1+e^2}$
- 3. $\frac{4}{e^2-1}$
- 4. $\frac{2}{e^2-1}$
- AI
- 1
- A2 2

3.0 0.75

	2		
	A3 3		
	3		
	A4 4		
	4		
ctive Question			
704048	Let g denote the acceleration due to gravity and $a>0$. A particle of mass m glides (without friction) on the cycloid given by $x=a(\theta-\sin\theta), y=a(1+\cos\theta)$, with $0\leq\theta\leq 2\pi$. Then the equation of motion of the particle is	3.0	0.75
	1. $(1 - \cos \theta)\ddot{\theta} + \frac{1}{2}(\sin \theta)(\dot{\theta})^2 - \frac{g}{2a}\sin \theta = 0$		
	2. $(1 - 2\cos\theta)\ddot{\theta} + (\sin\theta)(\dot{\theta})^2 - \frac{g}{a}\sin\theta = 0$		
	3. $m(1 - 2\cos\theta)\ddot{\theta} + (\sin\theta)(\dot{\theta})^2 + \frac{g}{a}\sin\theta = 0$		
	4. $m(1-2\cos\theta)\ddot{\theta} + \frac{m}{2}(\sin\theta)(\dot{\theta})^2 - \frac{g}{a}\sin\theta = 0$		
	मानें कि g गुरूत्वीय त्वरण को निर्दिष्ट करता है तथा $a>0$ है। द्रव्यमान m का एक		
	कण $0 \le \theta \le 2\pi$ के साथ $x = a(\theta - \sin \theta)$, $y = a(1 + \cos \theta)$ द्वारा दिए गए चक्रज		
	पर विसर्पित (बिना घर्षण) होता है। तब कण की गति का समीकरण है		
	1. $(1 - \cos \theta)\ddot{\theta} + \frac{1}{2}(\sin \theta)(\dot{\theta})^2 - \frac{g}{2a}\sin \theta = 0$		
	2. $(1-2\cos\theta)\ddot{\theta} + (\sin\theta)(\dot{\theta})^2 - \frac{g}{a}\sin\theta = 0$		
	3. $m(1-2\cos\theta)\ddot{\theta} + (\sin\theta)(\dot{\theta})^2 + \frac{g}{a}\sin\theta = 0$		
	4. $m(1-2\cos\theta)\ddot{\theta} + \frac{m}{2}(\sin\theta)(\dot{\theta})^2 - \frac{g}{a}\sin\theta = 0$		
	Al 1		
	i		
	A2 2		
	2		
	AJ 3		
	3		
	A4 4		
	4		
ctive Question			-11-

Let (X, Y) be a random vector with the joint moment generating function

$$M_{X,Y}\left(t_{1},t_{2}\right)=\left(\frac{3}{4}+\frac{1}{4}\,e^{t_{1}}\right)^{2}\left(\frac{5}{6}+\frac{1}{6}\,e^{t_{2}}\right)^{3},\qquad\left(t_{1},t_{2}\right)\,\in\mathbb{R}^{2}$$

Then P(X + 2Y > 1) is equal to

- 1. \frac{1581}{3456}
- $2. \quad \frac{1875}{3456}$
- 3. $\frac{125}{3456}$
- 4. 3331

मानें कि (X,Y) एक याद्दिछक सिंदेश है जिसका संयुक्त आधूर्ण जनक फलन

$$M_{X,Y}(t_1,t_2) = \left(\frac{3}{4} + \frac{1}{4}e^{t_1}\right)^2 \left(\frac{5}{6} + \frac{1}{6}e^{t_2}\right)^3, \quad (t_1,t_2) \in \mathbb{R}^2$$

है। तो P(X+2Y>1) निम्न के बराबर है

- 1. \frac{1581}{3456}
- $2. \qquad \frac{1875}{3456}$
- 3. $\frac{125}{3456}$
- 4. $\frac{3331}{3456}$
- A1 1
 - 1
- A2
- 1
- A3 .
- 2
- A4 4

Objective Question

50 704050

Let $X_1, X_2, ..., X_n, ...$ be a sequence of independent and identically distributed (i.i.d.) random variables having the common cumulative distribution function (cdf)

$$F(x) = \begin{cases} 0, & \text{if } x < 5 \\ 1 - e^{5-x}, & \text{if } x \ge 5 \end{cases}$$

Define $Y_n=\min\{X_1,X_2,\dots,X_n\}$, $Z_n=\sqrt{n}$ (Y_n-5) , $n=1,2,\dots$, and let Z be a standard normal random variable. Then which of the following statements is true?

- 1. $\lim_{n \to \infty} P\left(\frac{1}{2} < Y_n < \frac{3}{2}\right) = 1$
- 2. $Y_n \stackrel{P}{\to} 5 \text{ as } n \to \infty$
- 3. $Z_n \stackrel{d}{\to} Z \text{ as } n \to \infty$
- 4. $\lim_{n \to \infty} P(1 < Z_n < 2) = \Phi(2) \Phi(1)$, where $\Phi(\cdot)$ denotes the cdf of Z

KollegeApply

0.75

मानें कि $X_1, X_2, ..., X_n, ...$ सार्व संचयी बंटन फलन (cdf)

$$F(x) = \begin{cases} 0, & \text{at} x < 5 \\ 1 - e^{5-x}, & \text{at} x \ge 5 \end{cases}$$

वाले स्वतंत्रतः समबंदित (i.i.d.) याद्दच्छिक चरों का एक अनुक्रम है। यदि $Y_n=\min\{X_1,X_2,...,X_n\}$, $Z_n=\sqrt{n}$ (Y_n-5) , n=1,2,... है, व Z कोई मानक प्रसामान्य याद्दच्छिक चर है, तब निम्न कथनों में कौन सा सत्य है?

- 1. $\lim_{n \to \infty} P\left(\frac{1}{2} < Y_n < \frac{3}{2}\right) = 1$
- 2. $Y_n \stackrel{P}{\rightarrow} 5$ जब $n \rightarrow \infty$
- 3. $Z_n \stackrel{d}{\rightarrow} Z$ जब $n \rightarrow \infty$
- 4. $\lim_{n \to \infty} P(1 < Z_n < 2) = \Phi(2) \Phi(1)$, जहाँ Z के cdf को $\Phi(\cdot)$ द्वारा निर्दिष्ट किया गया है।
- A1 1 1 1 A2 2 2 2 A3 3 3 1 3 A4 4

Objective Question

51 704051

Consider a homogeneous Markov chain with state space {0, 1, 2} and transition probability matrix (TPM) given by

$$P = 1 \begin{pmatrix} 0 & 1 & 2 \\ 0 & \frac{2}{3} & \frac{1}{3} & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 \\ 2 & 0 & 0 & 1 \end{pmatrix}.$$

Let $P^{(n)} = \left(\left(P_{ij}^{(n)}\right)\right)$ be the n-step TPM. Then which of the following statements is true?

- 1. $\lim_{n \to \infty} P_{21}^{(n)} = 1$
- 2. The unique stationary distribution of the chain is given by $(\frac{1}{2}, \frac{1}{2}, 0)$
- 3. {1,2} forms a closed set of states
- 4. $\lim_{n\to\infty} P_{22}^{(n)} = 1$

3.0

ऐसी समांगी मॉर्कोव श्रृंखला पर विचार करें जिसके लिए स्थिति समष्टि $\{0,1,2\}$ है तथा संक्रमण प्रायिकता आव्यूह (TPM) निम्न है

$$P = 1 \begin{pmatrix} 0 & 1 & 2 \\ 0 & \frac{2}{3} & \frac{1}{3} & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 \\ 2 & 0 & 0 & 1 \end{pmatrix}.$$

मानें कि $P^{(n)}=\left(\left(P_{ij}^{(n)}\right)\right)$, n-चरण TPM है। तब निम्न कथनों में से कौन सा सत्य है?

- 1. $\lim_{n\to\infty} P_{21}^{(n)} = 1$
- 2. श्रृंखला का अद्वितीय स्तब्ध बंटन $(\frac{1}{2}, \frac{1}{2}, 0)$ द्वारा दिया गया है।
- 3. {1,2} अवस्थाओं का समुच्चय संवृत है।
- 4. $\lim_{n\to\infty} P_{22}^{(n)} = 1$
- Al 1
- 1
- AZ ,
- 3
- A3
- .
- A4

Objective Question

Suppose $X \sim \text{Poisson}\left(\frac{3}{5}\right)$. Then which of the following statements is true?

1.
$$P(X > 9) \ge \frac{11}{12}$$

2.
$$P(X < 9) \ge \frac{11}{12}$$

$$3. \qquad E\left(X-\frac{3}{4}\right)^2 \ge \frac{11}{12}$$

4.
$$\frac{11}{9} X \sim Poisson \left(\frac{11}{12}\right)$$

मार्ने कि $X \sim \text{Poisson}\left(\frac{3}{4}\right)$ है। तब निम्न कथनों में से कौन सा सत्य है?

1.
$$P(X > 9) \ge \frac{11}{12}$$

2.
$$P(X < 9) \ge \frac{11}{12}$$

3.
$$E\left(X-\frac{3}{4}\right)^2 \ge \frac{11}{12}$$

4.
$$\frac{11}{9} X \sim \text{Poisson}\left(\frac{11}{12}\right)$$

A1 1

1

0.75

Objective Question

53 704053

Let X_1 , X_2 , ..., X_6 be a random sample from a gamma distribution with the probability density function

$$f(x|\lambda) = \begin{cases} \frac{\lambda^4}{6} e^{-\lambda x} x^3, & \text{if } x > 0, \\ 0, & \text{if } x \le 0 \end{cases}$$

where $\lambda>0$ is unknown. Let $T=\sum_{i=1}^6 X_i$ and ψ be the uniformly most powerful test of size $\alpha=0.05$ for testing null hypothesis $H_0:\lambda=1$ against alternative hypothesis $H_1:\lambda>1$. For any positive integer ν , let $\chi^2_{\nu,\alpha}$ denote the $(1-\alpha)^{th}$ quantile of χ^2_{ν} distribution. Then the test ψ rejects H_0 if and only if

- 1. $T \ge \frac{1}{2} \chi_{48,0.05}^2$
- 2. $T \le \frac{1}{2} \chi^2_{48,0.95}$
- 3. $T \ge \frac{1}{2} \chi^2_{24,0.05}$
- 4. $T \leq \frac{1}{2} \chi^2_{24,0.95}$

मानें कि प्रायिकता घनत्व फलन

$$f(x|\lambda) = \begin{cases} \frac{\lambda^4}{6} e^{-\lambda x} x^3, & \text{alg } x > 0 \\ 0, & \text{alg } x \le 0 \end{cases}$$

वाले गामा बंटन से X_1 , X_2 ,..., X_6 कोई याद्दिखक प्रतिदर्श है जहाँ $\lambda>0$ अज्ञात है। मानें कि $T=\sum_{i=1}^6 X_i$ है तथा निराकरणीय परिकल्पना $H_0:\lambda=1$ को वैकल्पिक परिकल्पना $H_1:\lambda>1$ के विरुद्ध परीक्षण करने के लिए आमाप $\alpha=0.05$ का एक-समानतः शक्ततम परीक्षण ψ है। मानें कि $\chi^2_{\nu,\alpha}$ किसी भी धनात्मक पूर्णांक ν के लिए χ^2_{ν} बंटन का $(1-\alpha)$ वॉ विभाजक निर्दिष्ट करता है। तब परीक्षण ψ परिकल्पना H_0 को तभी और केवल तभी अस्वीकार करेगा जब

- 1. $T \ge \frac{1}{2} \chi_{48,0.05}^2$
- 2. $T \leq \frac{1}{2} \chi_{48,0.95}^2$
- 3. $T \ge \frac{1}{2} \chi^2_{24,0.05}$
- 4. $T \leq \frac{1}{2} \chi^2_{24,0.95}$

A1

1

A2 2

2

0.75

	A3 3		
	3		
	A4 4		
	4		
bjective Question			100.00
704054	For $n \ge 2$, let $\epsilon_1, \epsilon_2,, \epsilon_n$ be independent and identically distributed (i.i.d.) $N(0, \sigma^2)$ random variables and	3,0	0.75
	$Y_i = i \alpha + i^2 \alpha^2 + \epsilon_i, \qquad i = 1,, n,$		
	where $\sigma>0$ and $\alpha\in\mathbb{R}$ are unknown parameters. Then which of the following is a jointly minimal sufficient statistic for (α,σ) ?		
	1. $(\sum_{i=1}^{n} Y_i^2, \sum_{i=1}^{n} iY_i, \sum_{i=1}^{n} i^2 Y_i)$		
	2. $(\sum_{i=1}^{n} Y_i^2, \sum_{i=1}^{n} iY_i, \sum_{i=1}^{n} i^2 Y_i^2)$		
	3. $(\sum_{i=1}^{n} iY_{t}, \sum_{i=1}^{n} i^{2}Y_{t}^{2})$		
	4. $(\sum_{i=1}^{n} Y_i, \sum_{i=1}^{n} i Y_i)$		
	$n \geq 2$ के लिए, मार्ने कि $\epsilon_1, \epsilon_2,, \epsilon_n$, स्वतंत्रतः समबंटित (i.i.d.) $N(0, \sigma^2)$ याद्दिछक		
	चर हैं तथा		
	$Y_i = i \alpha + i^2 \alpha^2 + \epsilon_i, \qquad i = 1,, n,$		
	जहाँ $\sigma>0$ तथा $\alpha\in\mathbb{R}$ अज्ञात प्राचल हैं। तब निम्न में से (α,σ) के लिए एक		
	संयुक्ततः अल्पिष्ठ पर्याप्त प्रतिदर्शज है?		
	1. $(\sum_{i=1}^{n} Y_i^2, \sum_{i=1}^{n} iY_i, \sum_{i=1}^{n} i^2 Y_i)$		
	2. $(\sum_{i=1}^{n} Y_i^2, \sum_{i=1}^{n} iY_i, \sum_{i=1}^{n} i^2Y_i^2)$		
	3. $(\sum_{i=1}^{n} iY_i, \sum_{i=1}^{n} i^2Y_i^2)$		
	4. $(\sum_{i=1}^{n} Y_i, \sum_{i=1}^{n} i Y_i)$		
	AI 1		
	A2 2		
	2		
	A3 j		
	_ å -		
	A4 4 :		
	A .		
bjective Question 5 704055		3.0	0.75

For $n \ge 2$, let $X_1, X_2, ..., X_n$ be a random sample from a distribution with the probability density function

$$f(x|\theta) = \begin{cases} \theta x^{\theta-1}, & 0 < x < 1 \\ 0, & \text{otherwise} \end{cases}$$

where $\theta > 0$ is an unknown parameter. Then which of the following is the uniformly minimum variance unbiased estimator for $\frac{1}{a}$?

- $-\frac{1}{n}\sum_{i=1}^{n}\ln X_i$
- $2. \qquad -\frac{n}{\sum_{i=1}^{n} \ln X_i}$
- $-\frac{n-1}{\sum_{i=1}^{n} \ln X_i}$
- $-\frac{2}{n}\sum_{i=1}^{n}\ln X_i$

 $n \ge 2$ के लिए, मार्ने कि प्रायिकता घनत्व फलन

$$f(x|\theta) = \begin{cases} \theta x^{\theta-1}, & 0 < x < 1 \\ 0, & 3 \pi - 2 \end{pmatrix}$$

 $f(x|\theta) = \begin{cases} \theta x^{\theta-1}, & 0 < x < 1 \\ 0, & \text{अन्यथा} \end{cases}$ वाले बंटन से X_1, X_2, \dots, X_n कोई यादच्छिक प्रतिदर्श है, जहाँ $\theta > 0$ एक अज्ञात प्राचल है। तब $\frac{1}{a}$ के लिए निम्न में से कौन सा एक-समानत: न्यून<mark>तम</mark> प्रसर<mark>ण</mark> अनिभनत आकलक है?

- $-\frac{1}{n}\sum_{i=1}^{n}\ln X_{i}$

- $-\frac{2}{n}\sum_{i=1}^{n}\ln X_i$
- A1 ,

Objective Question

704056

The probability of getting a head in tossing of a coin is $p, p \in (0,1)$. The coin is independently tossed 25 times and head appears 10 times. The Bayes estimate of p, with respect to the prior Beta(5,5) and the squared error loss function, is

सिक्का उछालने पर चित आने की प्रायिकता p है, जहाँ $p \in (0,1)$ है। सिक्के को 25 बार स्वतंत्र रूप से उछाला जाता है जिसमें 10 बार चित आता है। पूर्वबंटन Beta(5,5) तथा वर्गित त्रुटि हानि फलन के सापेक्ष, p का बेज़ आकलक है:

- 1. $\frac{3}{7}$
- 2. $\frac{3}{5}$
- 3. $\frac{1}{2}$
- 4. $\frac{2}{5}$
- Al I
- A2 2
- -
- A3 :
- 3
- 4

Objective Question

57 704057

Consider a linear regression model $Y = \alpha + \beta x + \varepsilon$, where α and β are unknown parameters, and ε is a random error with mean 0. Based on 10 independent observations (x_i, y_i) , i = 1, ..., 10, the fitted model, using OLS is

$$\hat{y}_i = 1.5 + 0.8 x_i, \quad i = 1, 2, \cdots, 10.$$

Suppose that
$$\sum_{i=1}^{10} \left(y_i - \frac{1}{10} \sum_{j=1}^{10} y_j \right)^2 = 5$$
 and $\sum_{i=1}^{10} \left(x_i - \frac{1}{10} \sum_{j=1}^{10} x_j \right)^2 = 6$.

Then the adjusted coefficient of determination (adjusted R^2) is equal to (after rounding off to two places of decimal)

- 1. 0.74
- 2. 0.83
- 3. 0.77
- 4. 0.84

Kollege Apply

0.75

रैखिक समाश्रयण मॉडल $Y=\alpha+\beta x+\varepsilon$ पर विचार करें, जहाँ α एवं β अज्ञात प्राचल हैं तथा ε याद्दिक बुटि है जिसका माध्य 0 है। 10 स्वतंत्र प्रेक्षणों $(x_i,y_i),\ i=1,...,10,$ के आधार पर, OLS का उपयोग करते हुए आसंजित मॉडल है

$$\hat{y}_i = 1.5 + 0.8 \, x_i, \ i = 1, 2, ..., 10.$$

मार्ने कि $\sum_{i=1}^{10} \left(y_i - \frac{1}{10} \sum_{j=1}^{10} y_j \right)^2 = 5$ तथा $\sum_{i=1}^{10} \left(x_i - \frac{1}{10} \sum_{j=1}^{10} x_j \right)^2 = 6$ हैं। तब निर्धारण समायोजित गुणांक (समायोजित R^2) (दशमलब के बाद दो स्थानों तक निकटन करने पर) का मान है:

- 1. 0.74
- 2. 0.83
- 3. 0.77
- 4. 0.84
- A1 1
 - 1
- A2 .
- 2
- A3 3
- 3
- A4 .
- 4

Objective Question

58 704058

For $n \geq p+1$, let $\underline{X}_1, \underline{X}_2, \dots, \underline{X}_n$ be a random sample from $N_p\left(\underline{\mu}, \Sigma\right), \underline{\mu} \in \mathbb{R}^p$ and Σ is a positive definite matrix. Define $\overline{\underline{X}} = \frac{1}{n} \sum_{i=1}^n \underline{X}_i$ and $A = \sum_{i=1}^n (\underline{X}_i - \overline{\underline{X}}) (\underline{X}_i - \overline{\underline{X}})^T$. Then the distribution of $\operatorname{Trace}(A\Sigma^{-1})$ is

- 1. $W_p(n-1,\Sigma)$
- 2. Xp
- 3. χ_{np}^2
- 4. $\chi_{(n-1)p}^2$

मार्ने कि $N_p\left(\underline{\mu}, \Sigma\right)$ से $\underline{X}_1, \underline{X}_2, \dots, \underline{X}_n$ कोई याइच्छिक प्रतिदर्श है, जहाँ $\underline{\mu} \in \mathbb{R}^p, n \geq p+1$ तथा Σ एक धनात्मक निश्चित आव्यूह है। यदि $\overline{\underline{X}} = \frac{1}{n} \sum_{l=1}^n \underline{X}_l$ तथा $A = \sum_{l=1}^n (\underline{X}_l - \overline{\underline{X}}) (\underline{X}_l - \overline{\underline{X}})^T$ हैं, तब $\operatorname{Trace}(A\Sigma^{-1})$ का बंदन निम्न है

- 1. $W_p(n-1,\Sigma)$
- 2. X
- 3. χ^2_{np}
- 4. $\chi^2_{(n-1)p}$

Al I

1

0.75

	A2 2	
	.2	
	A3 ₃	
	3	
	A4 ₄	
	4	
Objective Question		
Objective Question 59 704059 Objective Question 60 704060	In a Latin square design, the degrees of freedom for the sum of squares due to error is 42. Then the degrees of freedom for the sum of squares due to treatments is 1. 6 2. 7 3. 8 4. 9 किसी लेटिन वर्ग डिज़ाइन में तुटि के कारण वर्गों के योग के लिए स्वातंत्र्य कोटि 42 है। तब उपचारों के कारण वर्गों के योग के लिए स्वातंत्र्य कोटि है: 1. 6 2. 7 3. 8 4. 9 A1 1 1 1 A2 2 2 2 A3 3 3 A4 4 4 4 Consider the linear programming problem: Maximize $z = 3x + 4y$ subject to $x + y \le 12$, $2x + 3y \le 30$, $x + 4y \le 36$, $x \ge 0$, $y \ge 0$. Then the optimal solution of the given problem is	3.0 0.75
	1. $x^* = 6$, $y^* = 6$	
	2. $x^* = 7$, $y^* = 5$	
	3. $x^* = 3$, $y^* = 8$	
	4. $x^* = 4$, $y^* = 8$	
1.1.		KollegeApply
		Empowering Education

रैखिक प्रोग्रामन समस्या

Maximize z = 3x + 4y

बशर्ते, $x+y \le 12$, $2x+3y \le 30$, $x+4y \le 36$, $x \ge 0$, $y \ge 0$ पर विचार करें। तब दी गयी समस्या का इष्टतम हल है

1.
$$x' = 6$$
, $y' = 6$

2.
$$x' = 7, y' = 5$$

3.
$$x^* = 3$$
, $y^* = 8$

4.
$$x^* = 4$$
, $y^* = 8$

AI I

1

A2 -

2

A3 .

-

A4 4

Multiple Response

61 704061

Let $\{A_n\}_{n\geq 1}$ be a collection of non-empty subsets of $\mathbb Z$ such that $A_n\cap A_m=\emptyset$

for $m \neq n$, If $\mathbb{Z} = \cup_{n \geq 1} A_n$, then which of the following statements are necessarily true?

- A_n is finite for every integer n ≥ 1.
- 2. A_n is finite for some integer $n \ge 1$.
- 3. A_n is infinite for some integer $n \ge 1$.
- A_n is countable (finite or infinite) for every integer n ≥ 1.

मानें कि $\mathbb Z$ के अरिक्त उपसमुख्यमों का कोई संग्रह $\{A_n\}_{n\geq 1}$ इस प्रकार है कि $m\neq n$ के लिए $A_n\cap A_m=\emptyset$ है। यदि $\mathbb Z=\cup_{n\geq 1}A_n$ है, तब तिम्त कथनों में कौत से आवश्यकतः सत्य हैं?

- 1. A_n प्रत्येक पूर्णांक $n \ge 1$ के लिए परिमित है।
- 2. A_n किसी पूर्णांक $n \ge 1$ के लिए परिमित है।
- 3. A_n किसी पूर्णांक $n \ge 1$ के लिए अपरिमित है।
- 4. A_n प्रत्येक पूर्णांक $n \ge 1$ के लिए गणतीय (परिमित या अपरिमित) है।

A1 1

1

A2 ,

- 19

A3 3

3

Kollege Apply

0.00

	A4 4		
	4		
fultiple Response		30218	112.53
2 704062	Let x be a real number. Which of the following statements are true?	4.75	0.00
	1. There exists an integer $n \ge 1$ such that $n^2 \sin \frac{1}{n} \ge x$.		
	2. There exists an integer $n \ge 1$ such that $n \cos \frac{1}{n} \ge x$.		
	3. There exists an integer $n \ge 1$ such that $ne^{-n} \ge x$.		
	 There exists an integer n ≥ 2 such that n(log n)⁻¹ ≥ x. 		
	मानें कि x एक वास्तविक संख्या है। निम्न कथनों में से कौन से सत्य हैं?		
	1. एक पूर्णांक $n \ge 1$ इस प्रकार है कि $n^2 \sin \frac{1}{n} \ge x$ है।		
	2. एक पूर्णांक $n \ge 1$ इस प्रकार है कि $n \cos \frac{1}{n} \ge x$ है।		
	3. एक पूर्णांक $n \ge 1$ इस प्रकार है कि $ne^{-n} \ge x$ है।		
	4. एक पूर्णांक $n \ge 2$ इस प्रकार है कि $n(\log n)^{-1} \ge x$ है।		
	Al i		
	Í		
	A2 2		
	2		
	A3 3		
	3		
	A4 4		
	4		
fultiple Response			
3 704063	Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function such that $ f(x) - f(y) \ge \log(1 + x - y)$ for all $x, y \in \mathbb{R}$. Which of the following statements are true?	4.75	0.00
	f is necessarily one-one.		
	2. f need not be one-one.		
	3. f is necessarily onto.		
	4. f need not be onto.		
	मार्ने कि एक सतत फलन $f:\mathbb{R} \to \mathbb{R}$ इस प्रकार है कि सभी $x,y \in \mathbb{R}$ के लिए		
	$ f(x)-f(y) \ge \log(1+ x-y)$ है। निम्न कथनों में से कौन से सत्य हैं?		
	1. f आवश्यकतः एकैकी है।		
	 f का एकैकी होना आवश्यक नहीं है। 		
	 f आवश्यकतः आच्छादी है। 		
	4. f का आच्छादी होना आवश्यक नहीं है।		
	Al i		
	1		

	A2 2		
	2		
	A3 3		
	3		
	A4 4		
	4		
fultiple Response			10 25
4 704064	Let $f:[0,\infty) o \mathbb{R}$ be the periodic function of period 1 given by	4.75	0.00
	$f(x) = 1 - 2x - 1 $ for $x \in [0,1]$.		
	Further, define $g:[0,\infty)\to\mathbb{R}$ by $g(x)=f(x^2)$. Which of the following statements are true?		
	 f is continuous on [0,∞). 		
	 f is uniformly continuous on [0, ∞). 		
	 g is continuous on [0,∞). 		
	 g is uniformly continuous on [0, ∞). 		
	एक आवर्ती फलन $f:[0,\infty)\to\mathbb{R}$ जिसका आवर्तकाल 1 है, को निम्न द्वारा परिभाषित		
	किया जाता है		
	$x \in [0,1]$ के लिए $f(x) = 1 - 2x - 1 $.		
	फलन $g:[0,\infty)\to\mathbb{R}$ को $g(x)=f(x^2)$ द्वारा परिभाषित किया गया है। निम्न कथनों		
	में कौन से सत्य हैं?		
	 [0,∞) पर f सतत है। 		
	2. $[0,∞)$ पर f एक-समानतः सतत है।		
	 [0,∞) पर g सतत है। 		
	 (0,∞) पर g एक-समानतः सतत है। 		
	Al ₁		
	i		
	A2 2		
	1		
	A3 3		
	3		
	A4 4		
	4		
fultiple Response	4 - 5 -	- 1	
704065		4.75	0.00

Kollege Apply
Empowering Education

Let $(f_n)_{n\geq 1}$ be the sequence of functions defined on [0,1] by

$$f_n(x) = x^n \log \left(\frac{1 + \sqrt{x}}{2} \right),$$

Which of the following statements are true?

- (f_n) converges pointwise on [0,1].
- 2. (f_n) converges uniformly on compact subsets of [0,1) but not on [0,1).
- (f_n) converges uniformly on [0,1) but not on [0,1].
- (f_n) converges uniformly on [0,1].

मार्ने कि $(f_n)_{n\geq 1}$ फलर्नों का अनुक्रम है जो [0,1] पर

$$f_n(x) = x^n \log \left(\frac{1 + \sqrt{x}}{2} \right)$$

द्वारा परिभाषित है। तिस्त कथतों में कौन से सत्य हैं?

- [0,1] पर (f_n) बिन्दुवार अभिसरित होता है।
- [0,1) के संहत उपसमुख्यमाँ पर (fn) एक-समानतः अभिसरित होता है लेकिन [0,1) पर नहीं।
- [0,1) पर (f_n) एक-समानतः अभिसरित होता है लेकिन [0,1] पर नहीं।
- (0,1) पर (f_n) एक-समानतः अभिसरित होता है।

A1 1

2

٠.

A3 3

A4

Multiple Response

For a real number λ , consider the improper integrals

$$I_{\lambda} = \int_{0}^{1} \frac{dx}{(1-x)^{\lambda}}, \quad K_{\lambda} = \int_{1}^{\infty} \frac{dx}{x^{\lambda}}.$$

Which of the following statements are true?

- 1. There exists λ such that I_{λ} converges, but K_{λ} does not converge.
- 2. There exists λ such that K_{λ} converges, but I_{λ} does not converge.
- 3. There exists λ such that I_{λ} , K_{λ} both converge.
- 4. There exists λ such that neither I_{λ} nor K_{λ} converges.

4.75

किसी वास्तविक संख्या λ के लिए, अनंत समाकलों (improper integrals)

$$I_{\lambda} = \int_{0}^{1} \frac{dx}{(1-x)^{\lambda}}, \quad K_{\lambda} = \int_{1}^{\infty} \frac{dx}{x^{\lambda}}$$

पर विचार करें। निम्न कथनों में से कौन से सत्य हैं?

- 1. कोई ऐसा λ है कि I_{λ} अभिसरित होता है, लेकिन K_{λ} अभिसरित नहीं होता है।
- 2. कोई ऐसा λ है कि Κλ अभिसरित होता है, लेकिन Ιλ अभिसरित नहीं होता है।
- 3. कोई ऐसा λ है कि I_{λ} व K_{λ} दोनों अभिसरित होते हैं।
- 4. कोई ऐसा λ है कि न तो $I_λ$ और न ही $K_λ$ अभिसरित होते हैं।
- A1 1
- A2 2
- 2
- A3 3
 - 3
- A4 4

Multiple Response

67 704067

Which of the following statements are true?

1. The function $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} [x] \sin \frac{1}{x} & \text{for } x \neq 0, \\ 0 & \text{for } x = 0 \end{cases}$$

has a discontinuity at 0 which is removable.

2. The function $f:[0,\infty)\to\mathbb{R}$ defined by

$$f(x) = \begin{cases} \sin(\log x) & \text{for } x \neq 0, \\ 0 & \text{for } x = 0 \end{cases}$$

has a discontinuity at 0 which is NOT removable.

3. The function $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} e^{1/x} & \text{for } x < 0, \\ e^{1/(x+1)} & \text{for } x \ge 0 \end{cases}$$

has a jump discontinuity at 0.

 Let f, g: [0,1] → R be two functions of bounded variation. Then the product fg has at most countably many discontinuities. 0.00

निम्न कथनों में से कौन से सत्य हैं?

1. निम्न द्वारा परिभाषित फलन $f: \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} [x] \sin \frac{1}{x} & x \neq 0 \text{ in fav}, \\ 0 & x = 0 \text{ in fav}, \end{cases}$$

के लिए 0 पर एक असांतत्य है जो अपनेय है।

2. निम्न द्वारा परिभाषित फलन $f:[0,\infty) \to \mathbb{R}$

$$f(x) = \begin{cases} \sin(\log x) & x \neq 0 \text{ के लिए,} \\ 0 & x = 0 \text{ के लिए.} \end{cases}$$

के लिए 0 पर एक असातंतत्य है जो अपनेय **नहीं** है।

3. निम्न द्वारा परिभाषित फलन $f: \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} e^{1/x} & \text{for } x < 0, \hat{\mathbf{a}} \hat{\mathbf{b}} \text{ लिए }, \\ e^{1/(x+1)} & \text{for } x \ge 0 \hat{\mathbf{a}} \hat{\mathbf{b}} \text{ लिए } \end{cases}$$

के लिए 0 पर एक प्लुति-असांतत्य है।

4. मार्ने कि $f, g: [0,1] \to \mathbb{R}$ परिबद्ध विचरण के दो फलन हैं। तब गुणनफल fg के असांतत्यों की संख्या अधिक से अधिक गणनीय होगी।

A1 1

1

A2

2

A3 3

3

4

Multiple Response

68 704068

For real numbers a, b, c, d, e, f, consider the function $F: \mathbb{R}^2 \to \mathbb{R}^2$ given by

$$F(x,y)=(ax+by+c,dx+ey+f), \text{ for } x,y\in\mathbb{R}.$$

Which of the following statements are true?

- F is continuous.
- 2. F is uniformly continuous.
- 3. F is differentiable.
- F has partial derivatives of all orders.

वास्तविक संख्याओं a,b,c,d,e,f के लिए नीचे दिये गए फलन $F: \mathbb{R}^Z \to \mathbb{R}^Z$ पर विचार करें

$$F(x,y)=(ax+by+c,dx+ey+f), x,y\in\mathbb{R}$$
 के लिए।

निम्न कथनों में से कौन से सत्य हैं?

- F सतत है।
- 2. F एक-समानतः सतत है।
- 3. F अवकलनीय है।
- 4. F के सभी कोटियों (orders) के आंशिक अवकलज हैं।

	Al 1		
	Y .		
	A2 2		
	2		
	A3 3		
	3		
	A4 4		
	4		
fultiple Response			
59 704069	For a differentiable surjective function $f:(0,1)\to(0,1)$, consider the function	4.75	0.00
	$F: (0,1) \times (0,1) \to (0,1) \times (0,1)$ given by		
	$F(x,y) = (f(x), f(y)), \ x,y \in (0,1).$ If $f'(x) \neq 0$ for every $x \in (0,1)$, then which of the following statements are true?		
	1. F is injective.		
	2. f is increasing.		
	3. For every $(x', y') \in (0,1) \times (0,1)$, there exists a unique $(x, y) \in (0,1) \times (0,1)$		
	such that $F(x,y) = (x',y')$.		
	4. The total derivative $DF(x, y)$ is invertible for all $(x, y) \in (0,1) \times (0,1)$.		
	एक अवकलनीय आच्छादी फलन $f:(0,1) \rightarrow (0,1)$ के लिए,		
	F:(0,1) imes (0,1) o (0,1) imes (0,1) पर विचार करें जो निम्नवत है		
	$F(x,y) = (f(x), f(y)), x,y \in (0,1).$		
	यदि प्रत्येक $x \in (0,1)$ के लिए $f'(x) \neq 0$ है, तब निम्न कथनों में से कौन से सत्य हैं?		
	1. F एकैकी है।		
	2. f वर्धमान है।		
	3. प्रत्येक $(x',y')\in (0,1)\times (0,1)$ के लिए, केवल एक $(x,y)\in (0,1)\times (0,1)$ इस प्रकार है कि $F(x,y)=(x',y')$ है।		
	4. सभी $(x,y) \in (0,1) \times (0,1)$ के लिए सम्पूर्ण अवकलज $DF(x,y)$ व्युत्क्रमणीय है।		
	A1 1		
	T.		
	A2 2		
	2		
	A3 3		
	3		
	A4 4		
	4		
Multiple Response		A TE	0.00
70 704070		4.75	0.

Suppose that $f: [-1,1] \to \mathbb{R}$ is continuous. Which of the following imply that f is identically zero on [-1,1]?

- 1. $\int_{-1}^{1} f(x) x^n dx = 0$ for all $n \ge 0$.
- 2. $\int_{-1}^{1} f(x) p(x) dx = 0 \text{ for all real polynomials } p(x).$
- 3. $\int_{-1}^{1} f(x) x^n dx = 0$ for all $n \ge 0$ odd.
- 4. $\int_{-1}^{1} f(x) x^n dx = 0 \text{ for all } n \ge 0 \text{ even.}$

मार्ने कि $f:[-1,1] \to \mathbb{R}$ सतत है। निम्न में से किनमें से यह निष्कर्ष निकाला जा सकता है कि [-1,1] पर f सर्वथा शून्य है?

- 1. सभी $n \ge 0$ के लिए $\int_{-1}^{1} f(x) x^n dx = 0$ है।
- 2. सभी वास्तविक बहुपदों p(x) के लिए $\int_{-1}^{1} f(x) p(x) dx = 0$ है।
- 3. सभी $n \ge 0$ विषम के लिए $\int_{-1}^{1} f(x) x^n dx = 0$ है।
- 4. सभी $n \ge 0$ सम के लिए $\int_{-1}^{1} f(x) x^n dx = 0$ है।

A1 1

1

A2 :

. .

A4

Multiple Response

71 704071

Let \mathbb{F} be a finite field and V be a finite dimensional non-zero \mathbb{F} -vector space. Which of the following can NEVER be true?

- 1. V is the union of 2 proper subspaces.
- 2. V is the union of 3 proper subspaces.
- V has a unique basis.
- 4. V has precisely two bases.

मानें कि \mathbb{F} एक परिमित क्षेत्र है तथा V एक परिमित विमीय शून्येतर \mathbb{F} -सदिश समिष्ट है। निम्न में से कौन से कथन कभी सत्य नहीं हो सकते?

- 1. V किन्हीं 2 उचित उपसमिष्टियों का सम्मिलन है।
- 2. V किन्हीं 3 उचित उपसमिष्टियों का सिम्मलन है।
- 3. V का आधार अद्वितीय है।
- 4. V के कुल दो आधार हैं।

A1 ;

A2 2

Kollege Apply

4.75

	2	
	A3 3	
	3	
	A4 4	
	14	
Multiple Response 72 704072		4.75 0.00
2 101012	Let $T: \mathbb{R}^5 \to \mathbb{R}^5$ be a \mathbb{R} -linear transformation. Suppose that	1.0
	(1,-1,2,4,0), $(4,6,1,6,0)$ and $(5,5,3,9,0)$ span the null space of T . Which of the following statements are true?	
	The rank of T is equal to 2.	
	2. Suppose that for every vector $v \in \mathbb{R}^5$, there exists n such that $T^n v = 0$. Then	
	T^2 must be zero.	
	3. Suppose that for every vector $v \in \mathbb{R}^5$, there exists n such that $T^n v = 0$. Then	
	T ³ must be zero.	
	4. $(-2, -8, 3, 2, 0)$ is contained in the null space of T .	
	मार्ने कि $T: \mathbb{R}^5 \to \mathbb{R}^5$ एक \mathbb{R} -रैखिक रूपांतरण है। मार्ने कि $(1,-1,2,4,0),(4,6,1,6,0)$	
	तथा $(5,5,3,9,0)$ की विस्तृति T की शून्य समिष्टि है। निम्न कथनों में से कौन से सत्य	
	** *?	
	 T की कोटि (rank) 2 के बराबर है। 	
	2. यदि प्रत्येक सदिश $v\in\mathbb{R}^5$ के लिए ऐसा कोई n है ताकि $T^nv=0$ है, तब T^2	
	शून्य होना ही चाहिए।	
	3. यदि प्रत्येक सिदश $v \in \mathbb{R}^5$ के लिए ऐसा कोई n है ताकि $T^nv=0$ है, तब T^3	
	शून्य होना ही चाहिए।	
	4. T की शून्य समिष्टि में (-2, -8, 3, 2, 0) है।	
	Al i	
	A2 2	
	A3 3	
	a	
	A4 4	
	4	
Multiple Response		
73 704073	Let X, Y be two $n \times n$ real matrices such that	4.75 0.00
	$XY = X^2 + X + I.$	
	Which of the following statements are necessarily true?	
	1. X is invertible.	
	2. $X + I$ is invertible.	
	3. XY = YX.	
	4. Y is invertible.	
		Kollege

मार्ने कि X,Y ऐसे दो $n \times n$ वास्तविक आव्यूह हैं कि

$$XY = X^2 + X + I.$$

निम्न कथनों में से कौन से आवश्यकतः सत्य हैं?

- 1. X व्युत्क्रमणीय है।
- X + 1 व्युत्क्रमणीय है।
- 3. XY = YX.
- 4. Y व्युत्क्रमणीय है।
- Al i
 - 1
- A2 2
- 2
- 3
- 3
- A4 4
 - -

Multiple Response

74 704074

Consider $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$. Suppose $A^5 - 4A^4 - 7A^3 + 11A^2 - A - 10I = aA + bI$

for some $a, b \in \mathbb{Z}$. Which of the following statements are true?

- 1. a+b>8.
- 2. a+b < 7.
- 3. a + b is divisible by 2.
- 4. a > b.
- $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$ पर विचार करें। मानें कि किन्हीं $a,b \in \mathbb{Z}$ के लिए

$$A^5 - 4A^4 - 7A^3 + 11A^2 - A - 10I = aA + bI$$

है। निम्न कथनों में से कौन से सत्य हैं?

- 1. a+b>8.
- 2. a+b < 7.
- 3. a+b, 2 से भाज्य है।
- 4. a > b.
- Al 1
- 1
- A2
- 4
- . . .
- . 4
- 3
- A4 4

Multiple Response

4.75

Let A be an $n \times n$ real symmetric matrix. Which of the following statements are necessarily true?

- A is diagonalizable.
- 2. If $A^k = I$ for some positive integer k, then $A^2 = I$.
- 3. If $A^k = 0$ for some positive integer k, then $A^2 = 0$.
- 4. All eigenvalues of A are real.

मानें कि A कोई $n \times n$ वास्तविक समित आव्यूह है। निम्न कथनों में से कौन से आवश्यकतः सत्य हैं?

- 1. A विकर्णनीय है।
- 2. यदि किसी धनात्मक पूर्णांक k के लिए $A^k = l$ है, तब $A^2 = l$ है।
- 3. यदि किसी धनात्मक पूर्णांक k के लिए $A^k=0$ है, तब $A^2=0$ है।
- A के सभी अभिलक्षणिक मान वास्तविक हैं।

Al I

A2 :

- 4

13 3

A4

Multiple Response

76 704076

Suppose a 7×7 block diagonal complex matrix A has blocks

(0), (1), $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, and $\begin{pmatrix} 2\pi i & 1 & 0 \\ 0 & 2\pi i & 0 \\ 0 & 0 & 2\pi i \end{pmatrix}$ along the diagonal.

Which of the following statements are true?

- 1. The characteristic polynomial of A is $x^3(x-1)(x-2\pi i)^3$.
- 2. The minimal polynomial of A is $x^2(x-1)(x-2\pi i)^3$.
- 3. The dimensions of the eigenspaces for $0, 1, 2\pi i$ are 2, 1, 3 respectively.
- 4. The dimensions of the eigenspaces for $0, 1, 2\pi i$ are 2, 1, 2 respectively. ਸਾਰੇ कि 7×7 खंड-विकर्ण सम्मिश्र आद्युह A के निम्न खंड हैं

(0), (1),
$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
, और $\begin{pmatrix} 2\pi i & 1 & 0 \\ 0 & 2\pi i & 0 \\ 0 & 0 & 2\pi i \end{pmatrix}$ जो विकर्ण के अनुदिश हैं।

निम्न कथनों में से कौन से सत्य हैं?

- 1. A का अभिलक्षणिक बहुपद $x^3(x-1)(x-2\pi i)^3$ है।
- 2. A का अल्पिष्ठ बह्पद $x^{2}(x-1)(x-2\pi i)^{3}$ है।
- 3. 0,1,2πί के लिए अभिलक्षणिक समष्टियों की विमांए क्रमश: 2,1,3 हैं।
- 4. 0, 1, 2πi के लिए अभिलक्षणिक समष्टियों की विमांए क्रमश: $2, 1, 2 cdot{हैं}$ ।

	Ai t		
	i. 1		
	1		
	A2 2		
	2		
	A3 3		
	3		
	A4 4		
ultiple Response	4	-	
704077	South the state of	4.75	0.00
	Let A be a real diagonal matrix with characteristic polynomial $\lambda^3 - 2\lambda^2 - \lambda + 2$. Define a bilinear form $(v, w) = v^t A w$ on \mathbb{R}^3 . Which of the following statements are true?		
	A is positive definite.		
	 A² is positive definite. 		
	3. There exists a nonzero $v \in \mathbb{R}^3$ such that $\langle v, v \rangle = 0$.		
	4. $\operatorname{rank} A = 2$.		
	मार्ने कि A अभिलक्षणिक बहुपद $\lambda^3 - 2\lambda^2 - \lambda + 2$ वाला कोई वास्तविक विकर्ण आव्यूह		
	है। \mathbb{R}^3 पर एक द्वरैखिक रूप $(v,w)=v^tAw$ को परिभाषित करें। निम्न कथनों में से		
	कौन से सत्य हैं?		
	1. A धनात्मक निश्चित है।		
	2. A ² धनात्मक निश्चित है।		
	3. कोई शून्येतर $v \in \mathbb{R}^3$ इस प्रकार है कि $(v,v)=0$ है।		
	4. कोटि (rank) A = 2.		
	AI I		
	A2 2		
	A3 3		
	3		
	A4 ,		
	4		
table Parameter	4		
hiltiple Response	4	4.75	0.00

Kollege Apply
Empowering Education

Consider the quadratic form $Q(x, y, z) = x^2 + xy + y^2 + xz + yz + z^2$. Which of the following statements are true?

- There exists a non-zero $u \in \mathbb{Q}^3$ such that Q(u) = 0.
- 2. There exists a non-zero $u \in \mathbb{R}^3$ such that Q(u) = 0.
- 3. There exist a non-zero $u \in \mathbb{C}^3$ such that Q(u) = 0.
- The real symmetric 3×3 matrix A which satisfies

$$Q(x, y, z) = [x \ y \ z] \ A \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

for all $x, y, z \in \mathbb{R}$ is invertible.

दविधाती समधात $Q(x,y,z) = x^2 + xy + y^2 + xz + yz + z^2$ पर विचार करें। निम्न कथनों में से कौन से सत्य हैं?

- कोई ऐसा शून्येतर $u \in \mathbb{Q}^3$ है कि Q(u) = 0 है।
- कोई ऐसा शून्येतर $u \in \mathbb{R}^3$ है कि Q(u) = 0 है।
- कोई ऐसा शुन्येतर $u \in \mathbb{C}^3$ है कि Q(u) = 0 है।
- 4. वास्तविक सममित 3×3 आव्यूह A जो सभी $x,y,z \in \mathbb{R}$ के लिए $Q(x, y, z) = [x \ y \ z] \ A \begin{vmatrix} x \\ y \end{vmatrix}$ को संतुष्ट करता है, व्युत्क्रमणीय है।

Multiple Response

704079

Let X be an uncountable subset of \mathbb{C} and let $f:\mathbb{C}\to\mathbb{C}$ be an entire function. Assume that for every $z \in X$, there exists an integer $n \ge 1$ such that $f^{(n)}(z) = 0$. Which of the following statements are necessarily true?

- f=0.
- f is a constant function.
- There exists a compact subset K of C such that $f^{-1}(K)$ is not compact.
- f is a polynomial.

4.75

मानें कि \mathbb{C} का एक अगणनीय उपसम्च्यय X है, तथा $f:\mathbb{C}\to\mathbb{C}$ कोई सर्वत्र वैश्लेषिक फलन है। मानें कि प्रत्येक $z \in X$ के लिए पूर्णांक $n \ge 1$ इस प्रकार है कि $f^{(n)}(z) = 0$ है। निम्न कथनों में से कौन से आवश्यकतः सत्य हैं?

- f=0.1.
- ह एक अचर फलन है।
- \mathbb{C} का एक संहत उपसम्च्यय K इस प्रकार है कि $f^{-1}(K)$ संहत नहीं है। 3.
- f एक बहुपद है।
- Al 1
- A2 2
- A3 3

Multiple Response

704080

Let $\Omega_1 = \{z \in \mathbb{C} : |z| < 1\}$ and $\Omega_2 = \mathbb{C}$. Which of the following statements are true?

- 0.00

4.75

- There exists a holomorphic surjective map $f: \Omega_1 \to \Omega_2$.
- 2. There exists a holomorphic surjective map $f: \Omega_2 \to \Omega_1$.
- There exists a holomorphic injective map $f: \Omega_1 \to \Omega_2$.
- There exists a holomorphic injective map $f: \Omega_2 \to \Omega_1$.

मानें कि $\Omega_1=\{z\in\mathbb{C}:|z|<1\}$ तथा $\Omega_2=\mathbb{C}$ हैं। निम्न कथनों में से कौन से सत्य हैं?

- कोई पूर्णसममितिक आच्छादी प्रतिचित्र $f: \Omega_1 \to \Omega_2$ है।
- कोई पूर्णसममितिक आच्छादी प्रतिचित्र $f: \Omega_2 \to \Omega_1$ है।
- कोई पूर्णसममितिक एकैकी प्रतिचित्र $f: \Omega_1 \to \Omega_2$ है।
- कोई पूर्णसममितिक एकैकी प्रतिचित्र $f: \Omega_2 \to \Omega_1$ है।
- A1 1
- A2 2
- A3 3

Multiple Response

Kollege Apply

For an integer k, consider the contour integral $I_k = \int_{|z|=1} \frac{e^z}{z^k} dz$. Which of the following statements are true?

- 1. $I_k = 0$ for every integer k.
- 2. $l_k \neq 0 \text{ if } k \geq 1.$
- 3. $|I_k| \le |I_{k+1}|$ for every integer k.
- 4. $\lim_{k\to\infty}|I_k|=\infty.$

किसी पूर्णांक k के लिए, कन्टूर समाकल $I_k=\int_{|z|=1}\frac{e^z}{z^k}dz$ पर विचार करें। निम्न कथर्नों में से कौन से सत्य हैं?

- 1. प्रत्येक पूर्णांक k के लिए $I_k = 0$ है।
- I_k ≠ 0 青 यदि k ≥ 1 青 l
- 3. प्रत्येक पूर्णांक k के लिए $|I_k| \le |I_{k+1}|$ है।
- 4. $\lim_{k\to\infty} |I_k| = \infty$,
- Al I
- . . .
- A2 2
- 1
- A3 3
- 3
- 7

Multiple Response

82 704082

For every $n \ge 1$, consider the entire function $p_n(z) = \sum_{k=0}^n \frac{z^k}{k!}$. Which of the following statements are true?

- The sequence of functions (p_n)_{n≥1} converges to an entire function uniformly on compact subsets of C.
- For all n ≥ 1, p_n has a zero in the set {z ∈ C : |z| ≤ 2023}.
- There exists a sequence (z_n) of complex numbers such that lim_{n→∞} |z_n| = ∞ and p_n(z_n) = 0 for all n ≥ 1.
- 4. Let S_n denote the set of all the zeros of p_n . If $a_n = \min_{z \in S_n} |z|$, then $a_n \to \infty$ as $n \to \infty$.

4.75 0.00

प्रत्येक $n \ge 1$ के लिए, सर्वत्र वैश्लैषिक फलन $p_n(z) = \sum_{k=0}^n \frac{z^k}{k!}$ पर विचार करें। निम्न कथनों में से कौन से सत्य हैं?

- С के सभी संहत उपसमुच्चयों पर फलनों का अनुक्रम (p_n)_{n≥1} सर्वत्र वैश्तैषिक फलन में एक-समानतः अभिसरित होता है।
- 2. सभी $n \ge 1$ के लिए समुच्चय $\{z \in \mathbb{C} : |z| \le 2023\}$ में p_n का एक शून्य है।
- 3. सम्मिश्र संख्याओं का कोई अनुक्रम (z_n) इस प्रकार है कि सभी $n \ge 1$ के लिए $\lim_{n \to \infty} |z_n| = \infty$ है तथा $p_n(z_n) = 0$ है।
- 4. मार्ने कि p_n के सभी शून्यों के समुच्चय को S_n से निर्दिष्ट किया जाता है। यदि $a_n = \min_{z \in S_n} |z|$ है, तब $a_n \to \infty$ जब $n \to \infty$

A1 1

1

A2 2

2

A3 3

3

A4 4

4

Multiple Response

83 704083

Which of the following statements are true?

- Let G₁ and G₂ be finite groups such that their orders |G₁| and |G₂| are coprime.
 Then any homomorphism from G₁ to G₂ is trivial.
- Let G be a finite group. Let f : G → G be a group homomorphism such that f fixes more than half of the elements of G. Then f(x) = x for all x ∈ G.
- 3. Let G be a finite group having exactly 3 subgroups. Then G is of order p^2 for some prime p.
- 4. Any finite abelian group G has at least d(|G|) subgroups in G, where d(m) denotes the number of positive divisors of m.

निम्न कथनों में से कौन से सत्य हैं?

- 1. मार्ने कि G_1 तथा G_2 ऐसे परिमित समूह हैं जिनकी कोटि (order) $|G_1|$ तथा $|G_2|$ असहभाज्य हैं। तब G_1 से G_2 सभी समाकारिताएं तुच्छ हैं।
- मार्ने कि G कोई परिमित समूह है। मार्ने कि f: G → G कोई समूह समाकारिता इस प्रकार है कि G के आधे से अधिक अवयवों को f स्थिर करता है। तब सभी x ∈ G के लिए f(x) = x है।
- 3. मार्ने कि G एक परिमित समूह है जिसके कुल 3 उपसमूह हैं। तब किसी अभाज्य p के लिए G की कोटि (order) p^2 है।
- 4. किसी भी परिमित आबेली समूह G के कम से कम d(|G|) उपसमूह हैं, जहाँ d(m) दवारा m के धनात्मक भाजकों की संख्याओं को निर्दिष्ट किया जाता है।

4.75

	Al I		
	T		
	A2 2		
	2		
	A3 3		
	3.		
	A4 4		
	4		
Multiple Response			0.00
84 704084	Let $n \in \mathbb{Z}$ be such that n is congruent to 1 mod 7 and n is congruent to 4 mod 15. Which of the following statements are true?	4.75	0.00
	n is congruent to 1 mod 3.		
	n is congruent to 1 mod 35.		
	3. n is congruent to 1 mod 21.		
	n is congruent to 1 mod 5.		
	मानें कि $n \in \mathbb{Z}$ इस प्रकार है कि वह 1 mod 7 से समशेष है व 4 mod 15 से भी समशेष		
	है। निम्न कथनों में से कौन से सत्य हैं?		
	 1 mod 3 के साथ n समशेष है। 		
	2. 1 mod 35 के साथ n समशेष है।		
	3. 1 mod 21 के साथ n समशेष है।		
	 1 mod 5 के साथ n समशेष है। 		
	Al i		
	A2 2		
	A3 3		
	A4		
	4		
Multiple Response			
85 704085	Let G be the group (under matrix multiplication) of 2×2 invertible matrices with entries from $\mathbb{Z}/9\mathbb{Z}$. Let a be the order of G . Which of the following statements are true?	4.75	0.00
	 a is divisible by 3⁴. 		
	2. a is divisible by 2 ⁴ .		
	3. a is not divisible by 48.		
	4. a is divisible by 36.		
			lle a c C
		KC	ollegeApply Empowering Education

आव्यूह गुणन के अंतर्गत 2×2 व्युत्क्रमणीय आव्यूह, जिनकी प्रविष्टियां $\mathbb{Z}/9\mathbb{Z}$ में हैं, के समूह को G से इंगित कीजिए। यदि G की कोटि (order) a है तो निम्न कथनों में से कौन से सत्य हैं?

- a यहाँ 3⁴ से विभाज्य है।
- 2. a यहाँ 24 से विभाज्य है।
- 3. a यहाँ 48 से विभाज्य नहीं है।
- a यहाँ 3⁶ से विभाज्य है।

A1 1

1

A2 2

2

A3 3

3

A4

Multiple Response

86 704086

Let $R = \mathbb{Z}[X]/(X^2 + 1)$ and $\psi : \mathbb{Z}[X] \to R$ be the natural quotient map. Which of the following statements are true?

- 1. R is isomorphic to a subring of C.
- For any prime number p ∈ Z, the ideal generated by ψ(p) is a proper ideal of R.
- 3. R has infinitely many prime ideals.
- The ideal generated by ψ(X) is a prime ideal in R.

मार्ने कि $R=\mathbb{Z}[X]/(X^2+1)$, तथा $\psi:\mathbb{Z}[X]\to R$ सहज विभाग-प्रतिचित्र (natural quotient map) है। निम्न कथनों में से कौन से सत्य हैं?

- C के किसी उपवलय से R तुल्याकारी है।
- 2. किसी भी अभाज्य संख्या $p \in \mathbb{Z}$ के लिए, $\psi(p)$ द्वारा जिनत गुणजावली R की एक उचित गुणजावली है।
- R की अनंततः अभाज्य ग्णजावितयाँ हैं।
- ψ(X) द्वारा जिनत ग्णजावली, R में एक अभाज्य ग्णजावली है।

A1 1

1

A2 2

2

A3

3

44 4

Kollege Apply

4.75 0.00

704087			10.00
704087	Let $f(X) = X^2 + X + 1$ and $g(X) = X^2 + X - 2$ be polynomials in $\mathbb{Z}[X]$. Which of the following statements are true? 1. For all prime numbers p , $f(X)$ mod p is irreducible in $\binom{\mathbb{Z}}{p\mathbb{Z}}[X]$. 2. There exists a prime number p such that $g(X)$ mod p is irreducible in $\binom{\mathbb{Z}}{p\mathbb{Z}}[X]$. 3. $g(X)$ is irreducible in $\mathbb{Q}[X]$. 4. $f(X)$ is irreducible in $\mathbb{Q}[X]$. Hif $f(X) = X^2 + X + 1$ तथा $g(X) = X^2 + X - 2$, $\mathbb{Z}[X]$ $f(X)$ mod $f(X)$ are avail $f(X)$ and $f(X)$ are avail $f(X)$ are avail $f(X)$ are avail $f(X)$ are avail $f(X)$ are availed $f(X)$ and $f(X)$ are available $f(X)$ are available $f(X)$ and $f(X)$ are available $f(X)$ and $f(X)$ are available $f(X)$ and $f(X)$ are available $f(X)$ are available $f(X)$ are available $f(X)$ and $f(X)$ are available $f(X)$ are available	4.75	0.00
	4		
ultiple Response 704088	 Let f(X) = X³ - 2 ∈ ℚ[X] and let K ⊂ ℂ be the splitting field of f(X) over ℚ. Let ω = e²πi/³. Which of the following statements are true? 1. The Galois group of K over ℚ is the symmetric group S₃. 2. The Galois group of K over ℚ(ω) is the symmetric group S₃. 3. The Galois group of K over ℚ is ℤ/3ℤ. 4. The Galois group of K over ℚ(ω) is ℤ/3ℤ. मार्ने कि ω = e²πi/₃ है। यदि f(X) = X³ - 2 ∈ ℚ[X] हो तथा ℚ पर f(X) के विभाजक 	4.75	0.00
	 क्षेत्र को K ⊂ C द्वारा इंगित किया जाए, तो निम्न कथनों में कौन से सत्य हैं? 1. K का Q पर गाल्वा समूह समित समूह S₃ है। 2. K का Q(ω) पर गाल्वा समूह समित समूह S₃ है। 3. K का Q पर गाल्वा समूह Z/3Z है। 4. K का Q(ω) पर गाल्वा समूह Z/3Z है। 		

	A1 i		1 11
	T .		
	Al ₂		
	d		
	A3 3		
	.3		
	A4 4		
	-4		
iultiple Response			
704089	Consider \mathbb{R}^2 with the Euclidean topology and consider $\mathbb{Q}^2 \subset \mathbb{R}^2$ with the subspace topology. Which of the following statements are true?	4.75	0.00
	 Q² is connected. 		
	 If A is a non-empty connected subset of Q², then A has exactly one element. 		
	3. Q ² is Hausdorff.		
	4. $\{(x,y) \in \mathbb{Q}^2 \mid x^2 + y^2 = 1\}$ is compact in the subspace topology.		
	यूक्लिडीय सांस्थितिकी वाले \mathbb{R}^2 तथा उपसमिष्ट सांस्थितिकी वाले $\mathbb{Q}^2 \subset \mathbb{R}^2$ पर विचार		
	करें। निम्न कथनों में कौन से सत्य हैं?		
	 Q² संबद्ध है। 		
	2. यदि A , \mathbb{Q}^2 का एक अरिक्त संबद्ध उपसमुच्य है, तब A में केवल एक अवयव है।		
	3. Q ² हाउस्डोर्फ		
	4. $\{(x,y) \in \mathbb{Q}^2 \mid x^2 + y^2 = 1\}$ उपसमिष्ट सांस्थितिकी में सहत है।		
	Al i		
	i O		
	A2 2		
	2		
	A3 3		
	1		
	A4		
	4		
fultiple Response	X	7.44	0.00
0 704090	Let $p: \mathbb{R}^2 \to \mathbb{R}$ be the function defined by $p(x,y) = x$. Which of the following statements are true?	4.75	0.00
	 Let A₁ = {(x,y) ∈ R² x² + y² < 1}. Then for each γ ∈ p(A₁), there exists a positive real number ε such that (γ − ε, γ + ε) ⊆ p(A₁). 		
	2. Let $A_2 = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$. Then for each $\gamma \in p(A_2)$, there exists a positive real number ε such that $(\gamma - \varepsilon, \gamma + \varepsilon) \subseteq p(A_2)$.		
	3. Let $A_3 = \{(x,y) \in \mathbb{R}^2 \mid xy = 0\}$. Then for each $y \in p(A_3)$, there exists a positive real number ε such that $(\gamma - \varepsilon, \gamma + \varepsilon) \subseteq p(A_3)$.		
	 Let A₄ = {(x, y) ∈ ℝ² xy = 1}. Then for each y ∈ p(A₄), there exists a positive real number ε such that (y − ε, y + ε) ⊆ p(A₄). 		
		Ko	ollegeApp
			Empowering Education

एक फलन $p: \mathbb{R}^2 \to \mathbb{R}$ को p(x,y) = x द्वारा परिभाषित कीजिए। निम्न कथनों में से कौन से सत्य हैं?

- 1. यदि $A_1 = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}$ है, तो प्रत्येक $y \in p(A_1)$ के लिए कोई ऐसी धनात्मक वास्तविक संख्या ε होगी ताकि $(y \varepsilon, \gamma + \varepsilon) \subseteq p(A_1)$ है।
- 2. यदि $A_2=\{(x,y)\in\mathbb{R}^2\mid x^2+y^2\leq 1\}$ है, तो प्रत्येक $\gamma\in p(A_2)$ के लिए कोई ऐसी धनात्मक वास्तविक संख्या ε होगी ताकि $(\gamma-\varepsilon,\gamma+\varepsilon)\subseteq p(A_2)$ है।
- 3. यदि $A_3=\{(x,y)\in\mathbb{R}^2\mid xy=0\}$ है, तो प्रत्येक $\gamma\in p(A_3)$ के लिए कोई ऐसी धनात्मक वास्तविक संख्या ε होगी ताकि $(\gamma-\varepsilon,\gamma+\varepsilon)\subseteq p(A_3)$ है।
- 4. यदि $A_4 = \{(x,y) \in \mathbb{R}^2 \mid xy = 1\}$ है, तो प्रत्येक $y \in p(A_4)$ के लिए कोई ऐसी धनात्मक वास्तविक संख्या ε होगी ताकि $(y \varepsilon, y + \varepsilon) \subseteq p(A_4)$ है।

Al 1

1

A2

2

A3 3

3

A4 4

Multiple Response

91 704091

Consider the problem

$$y' = (1 - y^2)^{10} \cos y$$
, $y(0) = 0$.

Let J be the maximal interval of existence and K be the range of the solution of the above problem. Then which of the following statements are true?

2.
$$K = (-1,1)$$

3.
$$I = (-1,1)$$

4.
$$K = [-1, 1]$$

समस्या

$$y' = (1 - y^2)^{10} \cos y$$
, $y(0) = 0$

पर विचार करें। यदि अस्तित्व के उच्चिष्ठ अन्तराल को J से इंगित करें तथा समस्या के हल के परिसर को K से इंगित करें, तो निम्न कथनों में से कौन से सत्य हैं?

1.
$$J = \mathbb{R}$$

2.
$$K = (-1,1)$$

3.
$$J = (-1,1)$$

4.
$$K = [-1, 1]$$

Al I

A2 2

4.75

	A3 3 3 A4 4		
	4		
fultiple Response			
2 704092	Consider the following initial value problem	4.75	0.00
	$y' = y + \frac{1}{2} \sin(y^2) , x > 0, y(0) = -1$		
	Which of the following statements are true?		
	1. there exists an $\alpha \in (0, \infty)$ such that $\lim_{x \to \alpha^-} y(x) = \infty$		
	 y(x) exists on (0, ∞) and it is monotone 		
	3. $y(x)$ exists on $(0, \infty)$, but not bounded below		
	 y(x) exists on (0, ∞), but not bounded above 		
	निम्न प्रारंभिक मान समस्या		
	$y' = y + \frac{1}{2} \sin(y^2) , x > 0, y(0) = -1$		
	पर विचार करें। निम्न कथनों में से कौन से सत्य हैं?		
	1. कोई ऐसा $\alpha \in (0, \infty)$ है जिसके लिए $\lim_{x \to \alpha^-} y(x) = \infty$ है।		
	 y(x) का (0, ∞) पर अस्तित्व है तथा यह एकदिष्ट (monotone) है। 		
	3. $y(x)$ का $(0,\infty)$ पर अस्तित्व है, लेकिन यह नीचे परिबद्ध नहीं है।		
	4. $y(x)$ का $(0, ∞)$ पर अस्तित्व है, लेकिन यह ऊपर परिबद्ध नहीं है।		
	Al i		
	i i		
	A2 2		
	2		
	A3 3		
	1		
	A4 4		
	4		
fultiple Response			

Kollege Apply
Empowering Education

Consider the initial value problem

$$x^2 y'' - 2x^2 y' + (4x - 2)y = 0,$$
 $y(0) = 0.$

Suppose $y = \varphi(x)$ is a polynomial solution satisfying $\varphi(1) = 1$. Which of the following statements are true?

1.
$$\varphi(4) = 16$$

2.
$$\varphi(2) = 2$$

3.
$$\varphi(5) = 25$$

4.
$$\varphi(3) = 3$$

प्रारम्भिक मान समस्या

$$x^2 y'' - 2x^2 y' + (4x - 2)y = 0, y(0) = 0$$

पर विचार करें। मार्ने कि $y = \varphi(x)$ कोई बहुपदीय हल है जो $\varphi(1) = 1$ को संतुष्ट करता है। निम्न कथनों में से कौन से सत्य हैं?

1.
$$\varphi(4) = 16$$

2.
$$\varphi(2) = 2$$

3.
$$\varphi(5) = 25$$

4.
$$\varphi(3) = 3$$

-1

A2 2

2

A3 .

- 9

A4

Multiple Response

04 704004

Consider the Cauchy problem

$$u\,\frac{\partial u}{\partial x}+\,\frac{\partial u}{\partial y}=1,\ (x,y)\in\,\mathbb{R}\times(0,\infty),$$

$$u(x,0) = kx, \quad x \in \mathbb{R},$$

with a given real parameter k. For which of the following values of k does the above problem have a solution defined on $\mathbb{R} \times (0, \infty)$?

1.
$$k = 0$$

2.
$$k = -2$$

3.
$$k = 4$$

4.
$$k = 1$$

0.00

एक कौशी (Cauchy) समस्या

$$u\;\frac{\partial u}{\partial x}\;+\;\frac{\partial u}{\partial y}=1,\;\;(x,y)\in\;\mathbb{R}\times(0,\infty),$$

$$u(x,0) = kx, x \in \mathbb{R}$$

पर विचार करें, जहाँ k एक वास्तविक प्राचल है। निम्न में से k के किन मानों के लिए ऊपर दी गयी समस्या का $\mathbb{R} \times (0, \infty)$ पर परिभाषित कोई हल है?

- 1. k = 0
- 2. k = -2
- 3. k = 4
- 4. k = 1
- A1 1
- 1
- A2 .
- 3
- A3 2
 - 3
- A4 .
- 4

Multiple Response

95 704095

Let $B=\{(x,y)\in\mathbb{R}^2:x^2+y^2<1\}$ be the open unit disc in \mathbb{R}^2 , $\partial B=\{(x,y)\in\mathbb{R}^2:x^2+y^2=1\}$ be its boundary and $\overline{B}=B\cup\partial B$. For $\lambda\in(0,\infty)$, let S_λ be the set of twice continuously differentiable functions in B, that are continuous on \overline{B} and satisfy

$$\left(\frac{\partial u}{\partial x}\right)^2 + \lambda \left(\frac{\partial u}{\partial y}\right)^2 = 1$$
, in B

$$u(x,y) = 0$$
 on ∂B .

Then which of the following statements are true?

- 1. $S_1 = \emptyset$
- $S_2 = \emptyset$
- S₁ has exactly one element and S₂ has exactly two elements.
- 4. S₁ and S₂ are both infinite.

4.75 0.00

मानें कि \mathbb{R}^2 में $B=\{(x,y)\in\mathbb{R}^2: x^2+y^2<1\}$ विवृत इकाई चक्रिका है, जिसकी सीमा $\partial B=\{(x,y)\in\mathbb{R}^2: x^2+y^2=1\}$ है तथा $\overline{B}=B\cup\partial B$ है। $\lambda\in(0,\infty)$ के लिए, मानें कि S_λ उन फलनों का समुच्चय है जो B पर दो बार सततः अवकलनीय हैं, साथ ही \overline{B} पर सतत हैं और

$$\left(\frac{\partial u}{\partial x}\right)^2 + \lambda \left(\frac{\partial u}{\partial y}\right)^2 = 1, \ B \stackrel{\text{A}}{\to} u(x, y) = 0, \ \partial B \stackrel{\text{T}}{\to} \tau,$$

को भी संतुष्ट करते हैं। निम्न कथनों में से कौन से सत्य हैं?

- 1. $S_1 = \emptyset$
- 2. $S_2 = \emptyset$
- 3. S_1 का केवल एक अवयव है तथा S_2 के कुल दो अवयव हैं।
- S₁ तथा S₂ दोनों अनंत हैं।
- Ai 1
- A2 2
- 3
- A3 :
- 3
- A4 4

Multiple Response

96 704096

The coefficient of x^3 in the interpolating polynomial for the data

x	0	1	2	3	4
y	1	2	1	3	5

- is
- 1. $-\frac{1}{3}$
- 2. $-\frac{1}{2}$
- 3. $\frac{5}{6}$
- 4. 17

0.00

आंकडों

x	0	1	2	3	4
у	1	2	1	3	5

के लिए अंतर्वेशी बहुपद में x^2 का गुणांक है

- 1. $-\frac{1}{3}$
- 2. $-\frac{1}{2}$
- 3. 5
- 4. 17
- Al ,
 - 1
- A2 2
- 4
- A3
- 3
- A4 4

Multiple Response

97 704097

Consider the initial value problem

$$\frac{dy}{dx} = f(x, y), \quad y(x_0) = y_0,$$

where f is a twice continuously differentiable function on a rectangle containing the point (x_0, y_0) . With the step-size h, let the first iterate of a second order scheme to approximate the solution of the above initial value problem be given by

$$y_1 - y_0 + Pk_1 + Qk_2$$

where $k_1 = h f(x_0, y_0)$, $k_2 = h f(x_0 + \alpha_0 h, y_0 + \beta_0 k_1)$ and $P, Q, \alpha_0, \beta_0 \in \mathbb{R}$.

Which of the following statements are correct?

1. If
$$\alpha_0 = 2$$
, then $\beta_0 = 2$, $P = \frac{3}{4}$, $Q = \frac{1}{4}$

2. If
$$\beta_0 = 3$$
, then $\alpha_0 = 3$, $P = \frac{5}{6}$, $Q = \frac{1}{6}$

3. If
$$\alpha_0 = 2$$
, then $\beta_0 = 2$, $P = \frac{1}{4}$, $Q = \frac{3}{4}$

4. If
$$\beta_0 = 3$$
, then $\alpha_0 = 3$, $P = \frac{1}{6}$, $Q = \frac{5}{6}$

4.75

प्रारंभिक मान समस्या

$$\frac{dy}{dx} = f(x, y), \ y(x_0) = y_0$$

पर विचार करें, जहाँ फलन f बिन्दु (x_0,y_0) को अंतर्विष्ट करने वाले एक आयत पर दो बार सतततः अवकलनीय है। सोपान (step-size) को h मानते हुए उपरोक्त प्रारंभिक मान समस्या का सन्निकट हल पाने के लिए दूसरी कोटि (order) की योजना का पहला पुनरावृत्त $y_1=y_0+Pk_1+Qk_2$

द्वारा दिया गया है, जहाँ

 $k_1=h\,f(x_0,y_0),\;k_2=h\,f(x_0+\alpha_0h,y_0+\beta_0\,k_1),\;$ तथा $P,Q,\alpha_0,\beta_0\in\mathbb{R}$ हैं। निम्न कथनों में से कौन से सत्य हैं?

1. यदि
$$\alpha_0 = 2$$
 है, तब $\beta_0 = 2, P = \frac{3}{4}, Q = \frac{1}{4}$

2. यदि
$$\beta_0 = 3$$
 है, तब $\alpha_0 = 3, P = \frac{5}{6}, Q = \frac{1}{6}$

3. यदि
$$\alpha_0 = 2$$
 है, तब $\beta_0 = 2, P = \frac{1}{4}, Q = \frac{3}{4}$

4. यदि
$$β_0 = 3$$
 है, तब $α_0 = 3, P = \frac{1}{6}, Q = \frac{5}{6}$

A1 1

1

A2

2

A3 3

3

A4

Multiple Response

98 704098

Among the curves connecting the points (1,2) and (2,8), let γ be the curve on which an extremal of the functional

$$J[y] = \int_{1}^{2} (1 + x^{3}y') \, y' \, dx$$

can be attained. Then which of the following points lie on the curve γ ?

1.
$$(\sqrt{2}, 3)$$

2.
$$(\sqrt{2}, 6)$$

3.
$$\left(\sqrt{3}, \frac{22}{3}\right)$$

4.
$$\left(\sqrt{3}, \frac{23}{3}\right)$$

4.75

बिन्दुओं (1,2) तथा (2,8) को मिलाने वाले वक्रों में γ एक ऐसा वक्र है जिस पर फलनक

$$J[y] = \int_1^2 (1 + x^3 y') \, y' \, dx$$

के एक चरम को प्राप्त किया जा सकता है। तब निम्न बिन्दुओं में से कौन से वक्र γ पर होंगे?

- 1. $(\sqrt{2}, 3)$
- 2. $(\sqrt{2}, 6)$
- 3. $\left(\sqrt{3}, \frac{22}{3}\right)$
- 4. $(\sqrt{3}, \frac{23}{3})$
- A1 1
- 1
- A2 .
- .
- A3 3
 - 3
- A4
- .

Multiple Response

99 704099

Define

 $S=\{y\in C^1[0,\pi]: y(0)=y(\pi)=0\}$

 $||f||_{\infty} = \max_{x \in [0,\pi]} |f(x)|, \text{ for all } f \in S$

$$B_0(f,\varepsilon) = \{f \in S : \|f\|_\infty < \varepsilon\}$$

$$B_1(f,\varepsilon) = \{f \in S: \|f\|_{\infty} + \|f'\|_{\infty} < \varepsilon\}$$

Consider the functional $J: S \to \mathbb{R}$ given by

$$J[y] = \int_0^{\pi} (1 - (y')^2) y^2 dx.$$

Then there exists $\varepsilon > 0$ such that

- 1. $J[y] \le J[0]$, for all $y \in B_0(0, \varepsilon)$
- 2. $J[y] \le J[0]$, for all $y \in B_1(0, \varepsilon)$
- J[y] ≥ J[0], for all y ∈ B₀(0, ε)
- 4. $J[y] \ge J[0]$, for all $y \in B_1(0, \varepsilon)$

परिभाषित करें

$$S=\{y\in C^1[0,\pi]:y(0)=y(\pi)=0\}$$

$$\|f\|_{\infty} = \max_{x \in [0,\pi]} |f(x)|$$
, सभी $f \in S$ के लिए

$$B_0(f,\varepsilon) = \{f \in S: \|f\|_\infty < \varepsilon\}$$

$$B_1(f,\varepsilon)=\{f\in S:\|f\|_\infty+\|f'\|_\infty<\varepsilon\},$$

और निम्न फलनक $J:S \to \mathbb{R}$ पर विचार करें

$$J[y] = \int_0^{\pi} (1 - (y')^2) y^2 dx.$$

तब एक ऐसा ε>0 होगा ताकि

- 1. सभी $y \in B_0(0,\varepsilon)$ के लिए $J[y] \leq J[0]$.
- 2. सभी $y \in B_1(0, \varepsilon)$ के लिए $J[y] \leq J[0]$.
- सभी y ∈ B₀(0,ε) के लिए J[y] ≥ J[0].
- 4. सभी $y \in B_1(0,\varepsilon)$ के लिए $J[y] \ge J[0]$.
- A1 1
- A2
- 13
- A3
- 3
- A4
- .

Multiple Response

100 704100

Consider the following Fredholm integral equation

$$y(x) - 3 \int_0^1 tx \, y(t) \, dt = f(x),$$

where f(x) is a continuous function defined on the interval [0,1]. Which of the following choices for f(x) have the property that the above integral equation admits at least one solution?

1.
$$f(x) = x^2 - \frac{1}{2}$$

$$2. \quad f(x) = e^x$$

3.
$$f(x) = 2 - 3x$$

4.
$$f(x) = x - 1$$

4.75

फेडहोम समाकल (Fredholm integral) समीकरण

$$y(x) - 3 \int_0^1 tx \, y(t) \, dt = f(x)$$

पर विचार करें, जहाँ f(x) अन्तराल [0,1] पर परिभाषित पर एक सतत फलन है। तो f(x) के लिए निम्न में से कौन सा विकल्प यह सुनिश्चित करता है कि उपरोक्त समाकल समीकरण का कम से कम एक हल है?

- 1. $f(x) = x^2 \frac{1}{2}$
- $2. \quad f(x) = e^x$
- 3. f(x) = 2 3x
- 4. f(x) = x 1
- A1 1
 - 1
- A2 2
- 2
- A3 :
- 3
- A4 4

Multiple Response

101 704101

Let y be the solution to the Volterra integral equation

$$y(x) = e^x + \int_0^x \frac{1+x^2}{1+t^2} y(t)dt.$$

Then which of the following statements are true?

- 1. $y(1) = (1 + \frac{\pi}{4})e$
- $2. \qquad y(1) = \left(1 + \frac{\pi}{2}\right)e$
- 3. $y(\sqrt{3}) = \left(1 + \frac{3\pi}{4}\right)e^{\sqrt{3}}$
- 4. $y(\sqrt{3}) = \left(1 + \frac{4\pi}{3}\right)e^{\sqrt{3}}$

मार्ने कि y वोल्टेरा समाकल (Volterra integral) समीकरण

$$y(x) = e^{x} + \int_{0}^{x} \frac{1 + x^{2}}{1 + t^{2}} y(t)dt$$

का समाधान है। तब निम्न कथनों में से कौन से सत्य हैं?

- 1. $y(1) = (1 + \frac{\pi}{4})e$
- 2. $y(1) = \left(1 + \frac{\pi}{2}\right)e$
- 3. $y(\sqrt{3}) = \left(1 + \frac{3\pi}{4}\right)e^{\sqrt{3}}$
- 4. $y(\sqrt{3}) = (1 + \frac{4\pi}{3})e^{\sqrt{3}}$

Al 1

	1 A2 ,		
	2		
	2		
	AJ 3		
	3		
	4 4		
	4		
ultiple Response 2 704102		4.75	0.00
102 704102	Let q_1 , q_2 be the generalized coordinates and p_1 , p_2 be the conjugate momenta, respectively. Let a and b be such that	4./2	0.00
	$Q_1 = q_1, P_1 = ap_1 + 16 p_2$		
	$Q_2 = p_2, P_2 = 2q_1 + b q_2$		
	is a canonical transformation. Then which of the following statements are true?		
	1. $a^2 + b^2 = 2$		
	2. $a-b=2$		
	3. $a+b=2$		
	4. $a = 1, b = 1$		
	मार्ने कि q_1 , q_2 तथा p_1 , p_2 क्रमशः व्यापकीकृत निर्देशांक तथा संयुग्मी संवेग हैं, व a		
	तथा b इस प्रकार हैं कि $Q_1=q_1, P_1=ap_1+16p_2$		
	$Q_2 = p_2, P_2 = 2q_1 + b q_2$		
	एक विहित रूपान्तरण है। निम्न कथनों में से कौन से सत्य हैं।		
	1. $a^2 + b^2 = 2$		
	2. a-b=2		
	3. $a+b=2$		
	3. $a + b = 2$ 4. $a = 1, b = 1$ A1 1 1 A2 ,		
	AI 1		
	1		
	A2 2		
	2		
	A3 3		
	j i		
	A4 4		
	4		
ultiple Response 3 704103		4.75	0.00
Q (04102		4./3	0.00

Consider two groups, say G_1 and G_2 , comprising of 10 and 30 patients, respectively. Suppose that mean diastolic blood pressures of patients in groups G_1 and G_2 are $80 \ mmHg$ and $100 \ mmHg$, respectively, and the corresponding variances are $4 \ mmHg^2$ and $2 \ mmHg^2$, respectively. Let \bar{X}, S^2, C and R, respectively, denote the mean (in mmHg), variance (in $mmHg^2$), coefficient of variation (in percentage) and range (in mmHg) of the diastolic blood pressures of the combined group (the two groups combined). Then which of the following statements are true?

(Note: For observations x_1,x_2,\ldots,x_n , variance is defined by $\frac{1}{n}\sum_{i=1}^n(x_i-\bar{x})^2$, where $\bar{x}=\frac{1}{n}\sum_{j=1}^nx_j$.)

- 1. $\bar{X} = 95$
- 2. $S^2 = 77$
- 3. $C > \frac{180}{19}$
- 4. R > 8

दो समूहों G_1 तथा G_2 पर विचार करें जिनमें क्रमश: 10 और 30 मरीज शामिल हैं। मानें कि समूहों G_1 तथा G_2 में मरीजों के माध्य अनुशिथिलन रक्तचाप क्रमश: 80 mmHg तथा 100 mmHg हैं तथा उनके प्रसरण क्रमश: 4 mmHg^2 तथा 2 mmHg^2 हैं। मानें कि संयुक्त समूह (दोनों समूहों का संयुक्त समूह) में अनुशिथिलन रक्तचापों के माध्य $(\text{mmHg} \ \text{मै})$, प्रसरण $(\text{mmHg}^2 \ \text{मै})$, विचरण गुणांक (प्रतिशत में) तथा $(\text{mmHg} \ \text{मै})$ परिसर (range) क्रमश: \bar{X} , S^2 , C तथा R हैं। तब निम्न कथनों में से कौन से सत्य है? (टिप्पणी: प्रेक्षणों $x_1, x_2, ..., x_n$, के लिए प्रसरण $\frac{1}{n} \sum_{l=1}^n (x_l - \bar{x})^2$ द्वारा परिभाषित है जहाँ $\bar{x} = \frac{1}{n} \sum_{j=1}^n x_j$ हैं।)

- 1. $\bar{X} = 95$
- 2. $S^2 = 77$
- 3. $C > \frac{180}{19}$
- 4. R > 8

Al ,

1

A2 2

2

A3 3

3

A4 4

Γ.

Multiple Response

Let X be a discrete random variable with the support $S = \{-1, 0, 1\}$ and $P(X = 0) = \frac{1}{3}$. Then which of the following statements are true?

- $1. E(X) \leq \frac{2}{3}$
- 2. $E(X^2) = \frac{2}{3}$
- 3. $E(|X|) = \frac{2}{3}$
- 4. $Var(X) > \frac{2}{3}$

मार्ने कि X एक असंतत याद्दिछक चर है जिसका आलंब $S=\{-1,0,1\}$ है तथा $P(X=0)=\frac{1}{3}$ है। तब निम्न वक्तव्यों में से कौन से सत्य हैं?

- $1. E(X) \le \frac{2}{3}$
- 2. $E(X^2) = \frac{2}{3}$
- 3. $E(|X|) = \frac{2}{3}$
- $4. \quad Var(X) > \frac{2}{3}$
- A1 1
 - 1
- A2 :
- . .
- .
- A4

Multiple Response

105 704105

Suppose that $\{X(t): t \geq 0\}$ and $\{Y(t): t \geq 0\}$ are two independent homogenous Poisson processes having the same arrival rate $\lambda = 2$. Let W_n^X and W_n^Y be the waiting times for the n^{th} arrival for the processes $\{X(t): t \geq 0\}$ and $\{Y(t): t \geq 0\}$, respectively, $n \in \mathbb{N}$. Then which of the following statements are true?

- 1. $P(W_2^X < W_3^Y) = \frac{11}{16}$
- 2. $P(W_1^X < W_1^Y) = \frac{1}{2}$
- 3. $P(W_2^X < W_3^Y) = \frac{13}{16}$
- 4. $P(W_1^X < W_1^Y) = \frac{1}{4}$

4.75

0.00

Kollege Apply

मानें कि $\{X(t): t \geq 0\}$ तथा $\{Y(t): t \geq 0\}$ समान आगमन दर $\lambda = 2$ वाली दो स्वतंत्र समांगी प्वासों प्रक्रियायें (Poisson processes) हैं। मानें कि W_n^X तथा W_n^Y क्रमशः प्रक्रियाओं $\{X(t): t \geq 0\}$ और $\{Y(t): t \geq 0\}$ में n-वें आगमन के प्रतीक्षा-काल हैं, जहाँ $n \in \mathbb{N}$ है। तब निम्न कथनों में से कौन से सत्य हैं?

1.
$$P(W_2^X < W_3^Y) = \frac{11}{16}$$

2.
$$P(W_1^X < W_1^Y) = \frac{1}{2}$$

3.
$$P(W_2^X < W_3^Y) = \frac{13}{16}$$

4.
$$P(W_1^X < W_1^Y) = \frac{1}{4}$$

A1 1

1

A2 2

2

A3 3

3

A4 4

1

Multiple Response

106 704106

Let X be a discrete random variable with support $S_X = \{0,1,2,\dots,25\}$, and $P(X = x) = {25 \choose x} \frac{1}{2^{25}}$ for all $x \in S_X$. Then which of the following statements are true?

- 1. The distributions of X 12.5 and 12.5 X are identical
- 2. $P(X \le 4) = P(X \ge 22)$
- 3. Coefficient of variation (in percentage) of X is 20
- 4. $P(X \le 4.9) = P(X \ge 20.1)$

मार्ने कि X एक ऐसा असंतत याद्दिछक चर है जिसका आलम्ब $S_X = \{0,1,2,\dots,25\}$ है. तथा सभी $x \in S_X$ के लिए $P(X=x) = {25 \choose x} \frac{1}{2^{25}}$ है। तब निम्न कथनों में कौन से सत्य हैं?

- X = 12.5 तथा 12.5 = X के बंटन समान हैं।
- 2. $P(X \le 4) = P(X \ge 22)$
- ४ का विचरण गुणांक (प्रतिशत में) 20 है।
- 4. $P(X \le 4.9) = P(X \ge 20.1)$

A1 1

A2 .

- 2

A3 3

4.75

Multiple Response

Suppose X is a continuous random variable with probability density function

0.00

Define

$$Y = \begin{cases} \frac{X}{|X|}, & \text{if } X \neq 0 \\ 0, & \text{if } X = 0 \end{cases}$$

 $f(x) = \frac{1}{\pi} \frac{1}{1 + (x + 1)^2}, \quad -\infty < x < \infty.$

Then which of the following statements are true?

1.
$$E(Y) = 0$$

2.
$$P(Y > 0) < P(Y < 0)$$

3.
$$P(Y < -1) < P(Y > 1)$$

4.
$$E(Y^2) = 1$$

मानें कि X निम्नलिखित प्रायिकता घनत्व फलन वाला कोई सतत याद्दिछक चर है

मानें कि
$$X$$
 निम्निलिखित प्रायिकता घनत्व फलन वाला कोई सतत याद्दिः
$$f(x) = \frac{1}{\pi} \frac{1}{1+(x+1)^2}, \qquad -\infty < x < \infty.$$
 परिभाषित करें
$$Y = \begin{cases} \frac{X}{|X|}, & \text{यदि } X \neq 0 \\ 0, & \text{यदि } X = 0 \end{cases}$$
 तब निम्न कथनों में कौन से सत्य हैं?
$$1. \qquad E(Y) = 0$$
 2.
$$P(Y > 0) < P(Y < 0)$$
 3.
$$P(Y < -1) < P(Y > 1)$$

$$Y = \begin{cases} \frac{X}{|X|}, & \text{यदि } X \neq 0 \\ 0, & \text{यदि } X = 0 \end{cases}$$

1.
$$E(Y) = 0$$

2.
$$P(Y > 0) < P(Y < 0)$$

3. $P(Y < -1) < P(Y > 1)$
4. $E(Y^2) = 1$

3.
$$P(Y < -1) < P(Y > 1)$$

4.
$$E(Y^2) = 1$$

Multiple Response

Kollege Apply

Suppose $U \sim \text{Uniform } (0,1)$, and $X = tan\left(\pi\left(U - \frac{1}{2}\right)\right)$. Then which of the following statements are true?

- 1. $E(X^4) = 3$
- 2. $P(X \in \{1, 2, 5\}) = \frac{1}{2}$
- 3. $E(e^X)$ does not exist
- 4. $P(X \le 0) = \frac{1}{2}$

मानें कि $U \sim \text{Uniform }(0,1)$, तथा $X = \tan\left(\pi\left(U - \frac{1}{2}\right)\right)$ हैं। तब निम्न कथनों में कौन से सत्य हैं?

- 1. $E(X^4) = 3$
- 2. $P(X \in \{1, 2, 5\}) = \frac{1}{2}$
- 3. $E(e^X)$ का अस्तित्व नहीं है।
- 4. $P(X \le 0) = \frac{1}{2}$
- A1 1
- 1
- A2 2
- 2
- A3 :
- 2
- 2
- Multiple Response

100 704100

Let X_1,\ldots,X_n be a random sample from $N(\mu,1)$ distribution, where $\mu\in\mathbb{R}$ is unknown. In order to test H_0 : $\mu=\mu_0$ against H_1 : $\mu>\mu_0$, where $\mu_0\in\mathbb{R}$ is some specified constant, consider the following two tests:

- (A) Reject H_0 if and only if $\bar{X}_n > c_1$, where c_1 is such that $P_{\mu_0}(\bar{X}_n > c_1) = \alpha \in (0,1)$ and $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$.
- (B) Reject H_0 if and only if $Median\{X_1,\ldots,X_n\}>c_2$, where c_2 is such that $P_{\mu_0}(Median\{X_1,\ldots,X_n\}>c_2)=\alpha\in(0,1)$.

Then which of the following statements are true?

- The test described in (A) is the uniformly most powerful test of size α
- 2. The test described in (B) is the uniformly most powerful test of size α
- 3. $P_{\mu}(\bar{X}_n > c_1) \to 1 \text{ as } n \to \infty \text{ for all } \mu > \mu_0$
- 4. $P_{\mu_0}(Median\{X_1, ..., X_n\} > \mu_0) = \frac{1}{2}$

4.75

मार्ने कि $X_1, ..., X_n$ बंटन $N(\mu, 1)$ में से कोई याद्दिछक प्रतिदर्श है, जहाँ $\mu \in \mathbb{R}$ अज्ञात है। किसी उल्लेखित अचर $\mu_0 \in \mathbb{R}$ के लिए निराकरणीय परिकल्पना $H_0: \mu = \mu_0$ को वैकल्पिक परिकल्पना $H_1: \mu > \mu_0$ के विरूद्ध परीक्षण हेतु निम्न दो परीक्षणों पर विचार करें:

- (A) H_0 को तभी और केवल तभी अस्वीकार करें जब $\bar{X}_n > c_1$ है, जहाँ c_1 इस प्रकार है कि $P_{\mu_0}(\bar{X}_n > c_1) = \alpha \in (0,1)$ तथा $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ हैं।
- (B) H_0 को तभी और केवल तभी अस्वीकार करें जब $Median\{X_1,...,X_n\} > c_2$ है, जहाँ c_2 इस प्रकार है कि $P_{\mu_0}(Median\{X_1,...,X_n\} > c_2) = \alpha \in (0,1)$ है।

तब निम्न कथनों में से कौन से सत्य हैं?

- (A) में वर्णित परीक्षण आमाप (size) α का एक-समानतः शक्ततम परीक्षण है।
- 2. (B) में वर्णित परीक्षण आमाप (size) α का एक-समानत: शक्ततम परीक्षण है।
- 3. सभी $\mu > \mu_0$ के लिए $P_{\mu}(\bar{X}_n > c_1) \rightarrow 1$ जब $n \rightarrow \infty$
- 4. $P_{\mu_0}(Median\{X_1,...,X_n\} > \mu_0) = \frac{1}{2}$

A1 1

A2

2

A3 3

44

Multiple Response

110 704110

Let X_1, X_2, \dots, X_{25} be independent and identically distributed (i.i.d.) Bernoulli(p) random variables, with $0 . Let <math>\bar{X} = \frac{1}{25} \sum_{l=1}^{25} X_l$,

$$T_1 = \begin{cases} \frac{5(\bar{X} - 0.5)}{\sqrt{\bar{X}(1 - \bar{X})}}, & \text{if } 0 < \bar{X} < \\ -5, & \text{if } \bar{X} = 0 \\ 5, & \text{if } \bar{X} = 1 \end{cases}$$

and $T_2 = 10 (\bar{X} - 0.5)$.

For testing H_0 : p=0.5 against H_1 : p>0.5, consider two tests ψ_1 and ψ_2 such that ψ_i rejects H_0 if and only if $T_i>2$, i=1 and 2. If observed $\bar{X}\in(0.5,0.75)$, then which of the following statements are true?

- 1. If ψ_1 rejects H_0 , then ψ_2 also rejects H_0
- 2. If ψ_1 does not reject H_0 , then ψ_2 also does not reject H_0
- 3. If ψ_2 rejects H_0 , then ψ_1 also rejects H_0
- If ψ₂ does not reject H₀, then ψ₁ also does not reject H₀

मार्ने कि X_1, X_2, \dots, X_{25} स्वतंत्रतः समबंटित (i.i.d.) Bernoulli(p) याद्दिङक चर हैं, जहाँ $0 है। मार्ने कि <math>\bar{X} = \frac{1}{25} \sum_{i=1}^{25} X_i$,

$$T_1 = \begin{cases} \frac{5(\bar{X} - 0.5)}{\sqrt{\bar{X}(1 - \bar{X})}}, & \text{ यदि } 0 < \bar{X} < 1 \\ -5, & \text{ यदि } \bar{X} = 0 \\ 5, & \text{ यदि } \bar{X} = 1 \end{cases}$$

तथा $T_2 = 10 (\bar{X} - 0.5)$ हैं।

निराकरणीय परिकल्पना H_0 : p=0.5 को वैकल्पिक परिकल्पना H_1 : p>0.5 के विरुद्ध परीक्षण हेतु दो ऐसे परीक्षणों ψ_1 तथा ψ_2 विचार करें जबिक ψ_i , H_0 को तभी और केवल तभी अस्वीकार करता है जब $T_i>2$ (i=1 तथा 2) हो। यदि प्रेक्षित $\bar{X}\in(0.5,0.75)$ है, तब निम्न कथनों में से कौन से सत्य हैं?

- 1. यदि ψ_1, H_0 को अस्वीकार करता है, तब ψ_2 भी H_0 को अस्वीकार करता है।
- 2. यदि ψ_1, H_0 को अस्वीकार नहीं करता है, तब ψ_2 भी H_0 को अस्वीकार नहीं करता है।
- 3. यदि ψ_2 , H_0 को अस्वीकार करता है, तब ψ_1 भी H_0 को अस्वीकार करता है।
- 4. यदि ψ_2 , H_0 को अस्वीकार नहीं करता है, तब ψ_1 भी H_0 को अस्वीकार नहीं करता है।

1

A2

2

A3

3

.

Multiple Response

111 704111

Let $X_1, X_2, ..., X_n$ be a random sample from an absolutely continuous distribution with the probability density function

$$f(x|\theta) = \begin{cases} e^{\theta - x}, & \text{if } x \ge \theta \\ 0, & \text{if } x < \theta \end{cases}$$

where $\theta \in \mathbb{R}$ is unknown. Define $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ and $X_{(1)} = min\{X_1, ..., X_n\}$. Then which of the following statements are true?

- 1. \bar{X} is the method of moments estimator of θ
- X₍₁₎ is the maximum likelihood estimator of θ
- 3. $X_{(1)} \frac{1}{n}$ is the uniformly minimum variance unbiased estimator of θ
- 4. $X_{(1)}$ is a sufficient statistic for θ

4.75

मार्ने कि $X_1, X_2, ..., X_n$ निम्न प्रायिकता घनत्व फलन वाले एक निरपेक्षतः सतत बंटन में से एक याद्रच्छिक प्रतिदर्श है

$$f(x|\theta) = \begin{cases} e^{\theta - x}, & \text{alg } x \ge \theta \\ 0, & \text{alg } x < \theta \end{cases}$$

जहाँ $\theta \in \mathbb{R}$ अज्ञात है। माने कि $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$ तथा $X_{(1)} = min\{X_1, \dots, X_n\}$ हैं। तब निम्न कथनों में से कौन से सत्य हैं?

- 1. θ का आधूर्ण विधिक आकलज \bar{X} है।
- 2. θ का अधिकतम संभाविता आकलज $X_{(1)}$ है।
- 3. θ का एक-समानत: अल्पतम प्रसरण अनिभनत आकलज $X_{(1)} \frac{1}{n}$ है।
- θ के लिए X₍₁₎ एक पर्याप्त प्रतिदर्शज है।
- A1 1
- 1
- A2 2
- 2
- A3
- 3
- A4 4

Multiple Response

112 704112

For $n\geq 2$, let X_1,X_2,\dots,X_n be a random sample from a $N(\mu,\sigma^2)$ population, where $\mu\in (-\infty,\infty)$ and $\sigma>0$ are unknown. Define $\bar{X}=\frac{1}{n}\sum_{j=1}^n X_j$ and $S^2=\frac{1}{n-1}\sum_{i=1}^n (X_i-\bar{X})^2$. For any $\alpha\in (0,1)$ and any positive integer m, let z_α denote the $(1-\alpha)^{th}$ quantile of the standard normal distribution and $t_{m,\alpha}$ denote the $(1-\alpha)^{th}$ quantile of t-distribution with m degrees of freedom. Then which of the following represent 90% confidence intervals for μ ?

1.
$$\left(\bar{X} - \frac{s}{\sqrt{n}}t_{n-1,0.05}, \ \bar{X} + \frac{s}{\sqrt{n}}t_{n-1,0.05}\right)$$

2.
$$\left(\bar{X} - \frac{\sigma}{\sqrt{n}}z_{0.05}, \ \bar{X} + \frac{\sigma}{\sqrt{n}}z_{0.05}\right)$$

3.
$$\left[\bar{X} - \frac{s}{\sqrt{n}}t_{n-1,0.9}, \infty\right)$$

4.
$$\left(-\infty, \overline{X} - \frac{S}{\sqrt{n}}t_{n-1,0.9}\right)$$

4.75 0.00

मार्ने कि $N(\mu,\sigma^2)$ समष्टि में से $X_1,X_2,...,X_n$ एक याद्दिन्छक प्रतिदर्श हैं जहाँ $n\geq 2$ है, $\mu\in (-\infty,\infty)$ तथा $\sigma>0$ अन्नात हैं। मार्ने कि $\overline{X}=\frac{1}{n}\sum_{t=1}^n X_t$ तथा

 $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ है। किसी भी $\alpha \in (0,1)$ तथा किसी भी धनात्मक पूर्णांक m के लिए मानक प्रसामान्य बंदन के $(1-\alpha)$ वें विभाजक को Z_α से इंगित करें तथा m स्वातंत्र्य कोटि (degrees of freedom) वाले t-बंदन के $(1-\alpha)$ वें विभाजक को $t_{m,\alpha}$ से इंगित करें। तब निम्त में कौन से अंतराल μ के लिए 90% विश्वास्यता अंतराल हैं?

- 1. $\left(\bar{X} \frac{S}{\sqrt{n}}t_{n-1,0.05}, \bar{X} + \frac{S}{\sqrt{n}}t_{n-1,0.05}\right)$
- 2. $\left(\bar{X} \frac{\sigma}{\sqrt{n}}z_{0.05}, \ \bar{X} + \frac{\sigma}{\sqrt{n}}z_{0.05}\right)$
- 3. $\left[\bar{X} \frac{S}{\sqrt{n}}t_{n-1,0.9}, \infty\right)$
- 4. $\left(-\infty, \ \overline{X} \frac{s}{\sqrt{n}}t_{n-1,0.9}\right)$
- A1 1
 - 1
- A2
 - 2
- A3 3
- Δ4
- :

Multiple Response

113 704113

Let $(X_1,Y_1),(X_2,Y_2)$ and (X_3,Y_3) be independent and identically distributed (i.i.d.) random vectors following a bivariate normal distribution with mean vector (0,0) and correlation matrix $\begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$, where $|\rho| < 1$. Suppose that

$$S_{\rho} = 3 E(sgn(X_1 - X_2)(Y_1 - Y_3)),$$

where

$$sgn(x) = \begin{cases} \frac{x}{|x|}, & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}.$$

Then which of the following statements are true?

- 1. If X_1 and Y_1 are independent random variables, then $S_\rho = 0$
- 2. $S_{\rho} = \frac{6}{\pi} \sin^{-1} \frac{\rho}{2}$
- 3. If $S_p = 0$, then X_1 and Y_1 are independent random variables
- 4. If X_1 and Y_1 are independent random variables, then $S_\rho = \frac{1}{2}$

4.75

मार्ने कि $(X_1,Y_1),(X_2,Y_2)$ तथा $(X_3,Y_3),$ स्वतंत्रतः समबंदित (i.i.d.) यादच्छिक सिदश हैं जो माध्य सिदश (0,0) तथा सहसबंध आव्यूह $\begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$ वाले द्विचर प्रसामान्य बंटन का अनुपालन करते हैं, जहाँ $|\rho|<1$ है। मार्ने कि

$$S_{\rho} = 3 E(sgn(X_1 - X_2)(Y_1 - Y_3)),$$

जहाँ

$$sgn(x) = \begin{cases} \frac{x}{|x|}, & \text{var} \ x \neq 0 \\ 0 & \text{var} \ x = 0 \end{cases}$$

तब निम्न कथनों में से कौन से सत्य हैं?

- 1. यदि X_1 तथा Y_1 स्वतंत्र यादृच्छिक चर हैं, तब $S_p=0$
- 2. $S_{\rho} = \frac{6}{\pi} \sin^{-1} \frac{\rho}{2}$
- 3. यदि $S_{\rho}=0$ है, तब X_1 तथा Y_1 स्वतंत्र यादच्छिक चर हैं
- 4. यदि X_1 तथा Y_1 स्वतंत्र याद्दिछक चर हैं, तब $S_\rho = \frac{1}{2}$
- A1 1
- 1
- A2
- 13
- A3 ;
- 3
- A4
- .

Multiple Response

114 704114

Let $X_1, X_2, ..., X_n$ be a random sample from an unknown distribution with absolutely continuous cumulative distribution function (cdf) F. Let F_0 be a specified absolutely continuous cdf. For testing H_0 : $F(x) = F_0(x)$ for all x against H_1 : $F(x) \neq F_0(x)$ for some x, consider the following two test statistics:

$$T_{1,n} = \sup_{x \in \mathbb{R}} \left| \frac{1}{n} \sum_{i=1}^n I_{\{X_i \leq x\}} - F_0(x) \right| \text{, and } T_{2,n} = \sup_{x \in \mathbb{R}} n \left| \frac{1}{n} \sum_{i=1}^n I_{\{X_i \leq x\}} - F_0(x) \right| \text{,}$$

where
$$I_{\{X_i \le x\}} = \begin{cases} 1, & \text{if } X_i \le x \\ 0, & \text{if } X_i > x \end{cases}$$
 for $i = 1, 2, ..., n$.

Then which of the following statements are true?

- 1. $T_{1,n} \stackrel{P}{\to} 0$ as $n \to \infty$ under H_0
- 2. $T_{2,n} \stackrel{P}{\to} 0$ as $n \to \infty$ under H_0
- 3. $\lim_{n\to\infty} P_F(T_{2,n}>1)=1 \text{ for all } F$
- 4. $T_{2,n}$ converges in distribution to a degenerate real valued random variable under H_0

4.75 0.00

मार्ने कि $X_1,X_2,...,X_n$ निरपेक्षतः सतत संचयी बंटन फलन (cdf) F से लिया एक याद्दिछक प्रतिदर्श है जहाँ F अज्ञात है। F_0 को विनिर्दिष्ट निरपेक्षतः सतत cdf मार्ने। निराकरणीय परिकल्पना H_0 : $F(x) = F_0(x)$, सभी x के लिए, को वैकल्पिक परिकल्पना H_1 : $F(x) \neq F_0(x)$, किसी x के लिए, के विरुद्ध परीक्षण के लिए निम्न दो परीक्षण प्रतिदर्शजों पर विचार करें:

$$T_{1,n} = \sup_{x \in \mathbb{R}} \left| \frac{1}{n} \sum_{i=1}^n I_{\{X_i \leq x\}} - F_0(x) \right|$$
 , ਜਪਾ $T_{2,n} = \sup_{x \in \mathbb{R}} n \, \left| \frac{1}{n} \sum_{i=1}^n I_{\{X_i \leq x\}} - F_0(x) \right|$,

जहाँ
$$I_{\{X_l \le x\}} = \begin{cases} 1, & \text{यदि } X_l \le x \\ 0, & \text{यदि } X_l > x \end{cases}$$
 $l = 1, 2, ..., n$ के लिए।

तब निम्न कथनों में से कौन से सत्य हैं?

- 1. H_0 के अधीन $T_{1,n} \stackrel{P}{\to} 0$ जब $n \to \infty$
- 2. H_0 के अधीन $T_{2,n} \stackrel{P}{\to} 0$ जब $n \to \infty$
- 3. सभी F के लिए $\lim_{n\to\infty} P_F(T_{2,n}>1)=1$
- 4. H_0 के अधीन $T_{2,n}$ वास्तविक मान वाले अपभ्रष्ट याद्दिखक चर पर बंटन में अभिसरित होता है।

A1 1

1

A2 2

2

A3

13

A4

Multiple Response

115 704115

Consider the one-way fixed effects ANOVA model

$$Y_{ij} = \mu + \alpha_i + \varepsilon_{ij}, \quad j = 1, ..., n_i; i = 1, ..., k,$$

where the errors ε_{ij} s are uncorrelated with mean 0 and finite variance σ^2 (> 0). Let $\bar{Y}_i = \frac{1}{n_i} \sum_{j=1}^{n_i} Y_{ij}$ for i = 1, ..., k. Then, which of the following statements are true?

- 1. $\frac{1}{\sum_{i=1}^k n_i} \sum_{i=1}^k \sum_{j=1}^{n_i} Y_{ij}$ is an unbiased estimator of μ
- 2. $2 \mu + \alpha_1 + \alpha_2$ is an estimable linear parametric function
- 3. $\mu + \alpha_1 + \alpha_2$ is an estimable linear parametric function
- 4. $\frac{1}{n_2} \sum_{j=1}^{n_2} (Y_{2j} \bar{Y}_2)$ is an unbiased estimator of α_2

4.75 0.00

निम्न एकमार्गी नियत प्रभाव ANOVA मॉडल पर विचार करें

$$Y_{ij} = \mu + \alpha_i + \varepsilon_{ij}, \quad j = 1, ..., n_i; i = 1, ..., k,$$

जहाँ त्रुटियां असहसंबंधित हैं तथा उनमें प्रत्येक त्रुटि $arepsilon_{ij}$ का माध्य 0 और प्रसरण σ^2 (> 0) परिमित है। मानें कि i=1,...,k के लिए $\bar{Y}_i=\frac{1}{n_i}\sum_{j=1}^{n_i}Y_{ij}$ है। तब निम्न वक्तव्यों में से कौनसे सत्य हैं?

- μ का एक अनिमनत आकलज $\frac{1}{\sum_{i=1}^k n_i} \sum_{j=1}^k Y_{ij}$ है
- $2\mu + \alpha_1 + \alpha_2$ एक आकलनीय रैखिक प्राचलिक फलन है
- $\mu + \alpha_1 + \alpha_2$ एक आकलनीय रैखिक प्राचलिक फलन है
- 4. α_2 का एक अनिभनत आकलज $\frac{1}{n_2} \sum_{j=1}^{n_2} (Y_{2j} \bar{Y}_2)$ है

Al I

Multiple Response

704116

Consider the multiple linear regression model $\underline{Y} = X\underline{\beta} + \underline{\epsilon}$, where $\underline{Y} = (Y_1, ..., Y_n)^T$, $\underline{\epsilon} = (\epsilon_1, ..., \epsilon_n)^T$, $\beta = (\beta_0, \beta_1, ..., \beta_p)^T$, X is a fixed $n \times (p+1)$ matrix (n > p+1) of rank (p+1), and $\epsilon_1, ..., \epsilon_n$ are independent and identically distributed (i.i.d.) $N(0,\sigma^2)$, $(\sigma>0)$ variables. If $\hat{\beta}$ is the OLS estimator of β , then which of the following statements are true?

- $\frac{1}{\sigma^2} \underline{Y}^T X \hat{\beta}$ has a central χ_{p+1}^2 distribution
- 2. $\frac{1}{\sigma^2} \left(\underline{Y} X \underline{\beta} \right)^T \left(\underline{Y} X \underline{\beta} \right)$ has a central χ^2_{n-p-1} distribution
- $X\hat{\beta}$ and $(\underline{Y} X\hat{\beta})^T (\underline{Y} X\hat{\beta})$ are independently distributed
- $\frac{1}{\sigma^2}\sum_{l=1}^n (Y_l \overline{Y})^2$ has a central χ^2_{n-1} distribution, where $\overline{Y} = \frac{1}{n}\sum_{l=1}^n Y_l$

बहुरैखिक समाश्रयण मॉडल $\underline{Y}=X\underline{\beta}+\underline{\epsilon}$ पर विचार करें. जहाँ $\underline{Y}=(Y_1,\dots,Y_n)^T$, $\underline{\epsilon}=(\epsilon_1,\dots,\epsilon_n)^T$, $\underline{\beta}=\left(\beta_0,\beta_1,\dots,\beta_p\right)^T$, \underline{a} X कोटि (p+1) का एक नियत $n\times(p+1)$ आव्यूह (n>p+1) है तथा $\epsilon_1,\dots,\epsilon_n$, स्वतंत्रतः समबंदित (i.i.d.) $N(0,a^2),(a>0)$ चर हैं। यदि $\underline{\beta}$ का OLS आकलक $\underline{\hat{\rho}}$ है, तब निम्न वक्तव्यों में से कौन से सत्य हैं?

- 1. $\frac{1}{\sigma^2} \underline{Y}^T X \hat{\underline{\beta}}$ का केन्द्रीय χ^2_{p+1} बंटन है।
- 2. $\frac{1}{\sigma^2} \left(\underline{Y} X \hat{\beta} \right)^T \left(\underline{Y} X \hat{\beta} \right)$ का केन्द्रीय χ^2_{n-p-1} बंटन है।
- 3. $X\hat{\beta}$ तथा $(\underline{Y} X\hat{\beta})^T (\underline{Y} X\hat{\beta})$ स्वतंत्रतः बंटित हैं।
- 4. $\frac{1}{\sigma^2}\sum_{i=1}^n(Y_i-\bar{Y})^2$ का केन्द्रीय χ^2_{n-1} बंटल है, जहाँ $\bar{Y}=\frac{1}{n}\sum_{i=1}^nY_i$ है।
- A1 1
- A2
- 1
- .A3
- .3
- A4
- .

Multiple Response

117 704117

Suppose $A = (a_{ij}) \sim W_3(5, \Sigma)$, where $\Sigma = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & 2 \end{pmatrix}$. Then which of the

following statements are true?

- 1. $a_{22} \sim \chi_3^2$
- $2. \qquad \frac{1}{2}a_{22} \sim \chi_5^2$
- 3. $\frac{1}{33}(a_{11}-4a_{13}+4a_{33})\sim\chi_3^2$
- 4. $\frac{1}{9}(a_{11}-4a_{13}+4a_{33})\sim\chi_5^2$

मानें कि $A = \begin{pmatrix} (a_{ij}) \end{pmatrix} \sim W_3(5,\Sigma)$ है, जहाँ $\Sigma = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & 2 \end{pmatrix}$ है। तब निम्न कथनों में से

कौन से सत्य हैं?

- 1. $a_{22} \sim \chi_3^2$
- 2. $\frac{1}{2}a_{22} \sim \chi_5^2$
- 3. $\frac{1}{33}(a_{11}-4a_{13}+4a_{33})\sim\chi_3^2$
- 4. $\frac{1}{9}(a_{11}-4a_{13}+4a_{33})\sim\chi_5^2$
- AI I
- A2 :

2

	A3 3		
	3		
	A4 4		
	4		
Multiple Response		955	10000
118 704118	Consider a population of 3 units having values 2, 4 and 6. A simple random sample (without replacement) of 2 units is to be drawn from the population. Let M denote the sample mean of this sample. Then which of the following statements are true?	4.75	0.00
	1. E(M) = 4		
	2. $E(M^2) = 17$		
	3. $E(M^3) = 72$		
	4. Var(M) = 1		
	2, 4 तथा 6 मान वाली 3 इकाईयों की एक समष्टि पर विचार करें। दो इकाईयों के एक सरल यादच्छिक प्रतिदर्श को बिना प्रतिस्थापन के समष्टि से निकाला जाता है। मानें कि M इस प्रतिदर्श के माध्य को इंगित करता है। तब निम्न कथनों में कौन से सत्य हैं?		
	1. E(M) = 4		
	2. $E(M^2) = 17$		
	3. $E(M^3) = 72$		
	4. Var(M) = 1		
	AI I		
	A2 1		
	1		
	A3 3		
	á		
	A4 4		
	4		
Multiple Response 119 704119		4.75	0.00
115 104115	Let X_i be an absolutely continuous random variable having the probability density function	13.12	0.00
	$f_i(x) = \begin{cases} i e^{-ix}, & \text{if } x \ge 0 \\ 0, & \text{if } x < 0 \end{cases}, i = 1, 2.$		
	Consider a series system comprising of independent components having random lifetimes described by random variables X_1 and X_2 . Let X denote the lifetime of the series system. Then which of the following statements are true?		
	1. $P(X > 4) = P(X > 1) P(X > 2)$		
	2. $P(X > 4 X > 2) = P(X > 2)$		
	$3. E(X) = \frac{1}{3}$		
	4. $6X \sim \chi_3^2$		
		Ko	ollege 🗛
			Empowering Educ

$$f_i(x) = \begin{cases} i \, e^{-i \, x}, & \text{alt } x \ge 0 \\ 0, & \text{alt } x < 0 \end{cases}, \ i = 1, 2.$$

याद्दिछक चरों X_1 तथा X_2 द्वारा वर्णित याद्दिछक जीवन काल वाले स्वतंत्र घटकों से गठित किसी श्रेणी तंत्र पर विचार करें। मानें कि इस श्रेणी तंत्र के जीवन काल को X से इंगित किया जाता है, तब निम्न कथनों में कौन से सत्य हैं?

- 1. P(X > 4) = P(X > 1) P(X > 2)
- 2. P(X > 4 | X > 2) = P(X > 2)
- 3. $E(X) = \frac{1}{3}$
- 4. $6X \sim \chi_3^2$
- A1 1
- 1
- A2 2
- 2
- A3 3
- -
- A4 4
- .
- Multiple Response

120 704120

Consider an M/M/1 queuing model with arrival rate $\lambda=15$ per hour and service rate $\mu=45$ per hour. Let N(t) denote the number of customers in the system at time $t\in(0,\infty)$. Also let T_1 and T_2 be the amounts of time a customer spends in the queue and in the system, respectively. Then which of the following statements are true?

- 1. $\lim_{t\to\infty} P(N(t)=1)=\frac{2}{9}$
- 2. $P(T_1 > 0) = \frac{1}{3}$
- 3. $E(T_1) = \frac{1}{90}$
- 4. $E(T_2) = \frac{1}{35}$

किसी M/M/1 पंक्ति मॉडल पर विचार करें जिसके लिए आगमन दर $\lambda=15\,\mathrm{yR}$ त घंटा तथा सेवा दर $\mu=45\,\mathrm{yR}$ त घंटा है। मानें कि समय $t\in(0,\infty)$ पर इस तंत्र में ग्राहकों की संख्या N(t) से इंगित होती है। यह भी मानें कि T_1 तथा T_2 किसी ग्राहक द्वारा क्रमशः पंक्ति तथा तंत्र में व्यतीत किए गए समय की अविधयाँ हैं। तब निम्न वक्तव्यों में से कौन से सत्य हैं?

- 1. $\lim_{t\to\infty} P(N(t)=1) = \frac{2}{9}$
- 2. $P(T_1 > 0) = \frac{1}{3}$
- 3. $E(T_1) = \frac{1}{90}$
- 4. $E(T_2) = \frac{1}{35}$

A1 1				
1				
A2 2 : 2				
A3 ₃				
3				
A4 : 4				
4				

